Очередное интервью Ландо про матфак ВШЭ
Nov. 26th, 2008 06:31 pmНа 4-й странице 17-го номера "Троицкого варианта" -- http://www.scientific.ru/trv/17N.pdf
Порекламирую новый математический факультет Высшей Школы Экономики и я. Я знаю сейчас в России всего два высших учебных заведения, которые хотя бы стремятся преподавать современную фундамендальную математику (а не устаревшую лет на 100 инженерно-прикладную). Это один частный университет -- НМУ, и один факультет государственного университета -- матфак ВШЭ.
Порекламирую новый математический факультет Высшей Школы Экономики и я. Я знаю сейчас в России всего два высших учебных заведения, которые хотя бы стремятся преподавать современную фундамендальную математику (а не устаревшую лет на 100 инженерно-прикладную). Это один частный университет -- НМУ, и один факультет государственного университета -- матфак ВШЭ.
no subject
Date: 2008-12-03 09:55 am (UTC)Интересно также, какие именно коцепные комплексы Вам давали, чтобы считать когомологии. Подозреваю, что раз это был курс дифференциальной геометрии, то скорее всего это были когомологии де Рама. Их для многообразия проще всего определить, но, конечно, если стартовать с этого определения, то может быть довольно загадочно.
Про книжки - если топология Вам кажется осмысленным занятием, то про множественные применения есть замечательная книжка Ботта и Ту "Дифференциальные формы в алгебраической топологии" (кажется, с точностью до 1-2 слов в названии). Есть также отличная книжка Васильева по топологии, изданная по мотивам курса Васильева в НМУ, где речь о симплициальных и сингулярных когомологиях, и эта книжка очень многое проясняет, на самом деле.
no subject
Date: 2008-12-03 06:27 pm (UTC)> Подозреваю, что раз это был курс дифференциальной геометрии,
> то скорее всего это были когомологии де Рама.
Да, конечно, они.
> тут уже вопрос в том, являются ли некоторые объекты
> для Вас естественными, или нет, - векторные расслоения, например?
Касательные и кокасательные расслоения — безусловно естественны. Первое — из-за систем дифференциальных уравнений, второе — из-за гамильтонова формализма. Определение тензорного поля как сечения TM ... TM T*M ... T*M — тоже совершенно естественное. С векторными расслоениями вообще несколько сложнее. Мне просто не приходят в голову задачи настолько общие, что они начинаются со слов «Рассмотрим произвольное векторное расслоение...».
> если топология в Вашей системе отсчёта - такая же кабалистика, то будут проблемы.
Общая топология всегда была мне интересной и близкой. Вплоть до самых низких уровней типа аксиом отделимости.
no subject
Date: 2008-12-03 06:56 pm (UTC)Я скорее имел в виду дифференциальную и алгебраическую топологию. Общая топология - это тоже дело, но тут она будет проходить стороной, преимущественно. :)