Контрамодули и модули кокручения
Sep. 21st, 2012 11:22 am![[personal profile]](https://www.dreamwidth.org/img/silk/identity/user.png)
Хотелось бы доказать
Утверждение 1. Пусть R -- полное нетерово локальное кольцо. Тогда всякий R-контрамодуль (над топологическим кольцом R в адической топологии) является R-модулем кокручения (над R как дискретным кольцом).
В статье Енокса показано, что свободный R-контрамодуль R[[X]] является плоским R-модулем кокручения (поскольку он изоморфен HomR(C,C[X]), где C -- инъективная оболочка поля вычетов R, так что это Hom из инъективного R-модуля в инъективный).
Если R регулярно, то всякий R-контрамодуль имеет конечную левую свободную R-контрамодульную резольвенту, откуда утверждение 1 сразу следует. Теперь допустим, что кольцо R является факторкольцом регулярного полного нетерова локального кольца T. Тогда всякий R-контрамодуль является также T-контрамодулем, и искомое утверждение немедленно следует из леммы 2 из этого постинга -- http://posic.livejournal.com/850193.html
Нет ли более прямого рассуждения? В силу результата Рейно-Грюзона, всякий плоский R-модуль имеет конечную правую резольвенту из плоских R-модулей кокручения, так что достаточно показать, что ExtR>0(F,P) = 0 для плоского R-модуля кокручения F и R-контрамодуля P. Согласно Е., модуль F является произведением контрамодулей над пополнениями локализаций кольца R по его простым идеалам.
Дополнение к замкнутой точке в спектре R можно покрыть конечным числом главных аффинных открытых подмножеств, и F представится в виде конечной прямой суммы, где одно слагаемое есть R-контрамодуль, а на каждом из оставшихся обратимо действует некоторый элемент из максимального идеала кольца R. Теперь можно воспользоваться теоремой B.1.1(2a) из 1202.2697, и вопрос сводится к доказательству того, что ExtR>0(F,P) = 0, где F -- свободный R-контрамодуль, P -- произвольный, а Ext берется в категории всех R-модулей.
В отношении последнего, хотелось бы сформулировать общее
Утверждение 2. Пусть R -- адическое пополнение нетерова кольца S по его идеалу I. Тогда Ext между двумя R-контрамодулями Q и P, посчитанный в категории R-контрамодулей, изоморфен Ext-у между ними же, посчитанному в категории S-модулей.
Очевидно, утверждение 2 достаточно доказывать в случае, когда R-контрамодуль Q = F свободный. Теперь если I -- максимальный идеал в S, а полное нетерово локальное кольцо R является факторкольцом регулярного, у нас это уже доказано выше. В самом деле, R плоский S-модуль и F плоский R-модуль, так что F плоский S-модуль; а Q -- R-модуль кокручения, так что он также и S-модуль кокручения.
Хотелось бы доказать утверждение 2 в общем случае. Также интересно знать, всякое ли полное нетерово локальное кольцо является факторкольцом регулярного.
Утверждение 1. Пусть R -- полное нетерово локальное кольцо. Тогда всякий R-контрамодуль (над топологическим кольцом R в адической топологии) является R-модулем кокручения (над R как дискретным кольцом).
В статье Енокса показано, что свободный R-контрамодуль R[[X]] является плоским R-модулем кокручения (поскольку он изоморфен HomR(C,C[X]), где C -- инъективная оболочка поля вычетов R, так что это Hom из инъективного R-модуля в инъективный).
Если R регулярно, то всякий R-контрамодуль имеет конечную левую свободную R-контрамодульную резольвенту, откуда утверждение 1 сразу следует. Теперь допустим, что кольцо R является факторкольцом регулярного полного нетерова локального кольца T. Тогда всякий R-контрамодуль является также T-контрамодулем, и искомое утверждение немедленно следует из леммы 2 из этого постинга -- http://posic.livejournal.com/850193.html
Нет ли более прямого рассуждения? В силу результата Рейно-Грюзона, всякий плоский R-модуль имеет конечную правую резольвенту из плоских R-модулей кокручения, так что достаточно показать, что ExtR>0(F,P) = 0 для плоского R-модуля кокручения F и R-контрамодуля P. Согласно Е., модуль F является произведением контрамодулей над пополнениями локализаций кольца R по его простым идеалам.
Дополнение к замкнутой точке в спектре R можно покрыть конечным числом главных аффинных открытых подмножеств, и F представится в виде конечной прямой суммы, где одно слагаемое есть R-контрамодуль, а на каждом из оставшихся обратимо действует некоторый элемент из максимального идеала кольца R. Теперь можно воспользоваться теоремой B.1.1(2a) из 1202.2697, и вопрос сводится к доказательству того, что ExtR>0(F,P) = 0, где F -- свободный R-контрамодуль, P -- произвольный, а Ext берется в категории всех R-модулей.
В отношении последнего, хотелось бы сформулировать общее
Утверждение 2. Пусть R -- адическое пополнение нетерова кольца S по его идеалу I. Тогда Ext между двумя R-контрамодулями Q и P, посчитанный в категории R-контрамодулей, изоморфен Ext-у между ними же, посчитанному в категории S-модулей.
Очевидно, утверждение 2 достаточно доказывать в случае, когда R-контрамодуль Q = F свободный. Теперь если I -- максимальный идеал в S, а полное нетерово локальное кольцо R является факторкольцом регулярного, у нас это уже доказано выше. В самом деле, R плоский S-модуль и F плоский R-модуль, так что F плоский S-модуль; а Q -- R-модуль кокручения, так что он также и S-модуль кокручения.
Хотелось бы доказать утверждение 2 в общем случае. Также интересно знать, всякое ли полное нетерово локальное кольцо является факторкольцом регулярного.