[personal profile] posic
Okazyvaetsya, gruppa perestanovok 6-elementnogo mnozhestva imeet vneshnij avtomorfizm. Ya prochital ob etom zdes':

Consider 6 things, e.g. the numerals 123456. There are 15 non-ordered pairs of them. (Call these "duads.") Also there are 15 ways to divide the original set into three duads, e.g. {(12}{34}{56}}. Call these "synthemes." Five synthemes can be chosen so as to contain each duad exactly once; and there turn out to be exactly six ways to make this choice. You can label these six sets ABCDEF. Then a permutation of 123456 induces a permutation of ABCDEF. A two-cycle such as (12) induces a product of three disjoint two-cycles such as (AB)(CD)(EF), so the map from one permutation to the other cannot be an inner automorphism.

Dovol'no zamyslovataya vse-taki konstrukciya, sopostavlyayuschaya 6-elementnomu mnozhestvu drugoe 6-elementnoe mnozhestvo. Ya esche znayu na etu temu gorazdo bolee prostuyu konstrukciyu, sopostavlyayuschuyu 4-elementnomu mnozhestvu 3-elementnoe mnozhestvo.

Ostal'nye gruppy Sn (pri n ne ravnom 6) vneshnih avtomorfizmov ne imeyut, chto netrudno dokazat', rassmotrev klass sopryazhennosti, sostoyaschij iz transpozicij, i ego obraz pri nashem avtomorfizme. Podrobnosti imeyutsya zdes' (fajl v formate postscript).

Date: 2003-06-12 10:42 pm (UTC)
From: [identity profile] roma.livejournal.com
Da, esche mozhno zastavit' PSL(2,F_5) dejstvovat' na takom monozhestve iz 5 predmetov: za predmet voz'mem kvadratichnuyu
formu na V=F_5^2 ne predstavljajuschuju nul', det = 1, s tochnost'ju do umnozhenija na -1 (eto navernoe pochti to zhe, chto ty govorish' (?)).

Kstati, A_5 eto zhe esche gruppa ikosaedra, kak izvestno, ona zhe podgruppa v SL(2,C) tipa E_8.
Navernoe, trehmernoe predstavlenie PSL(2,F_5) mozhno podnyat' v char 0, potom uvidet', chto rezul'tat opredelen nad R, obraz ego -- gruppa
simmetrij ikosaedra, a pryamye vershin ikosaedra est' kakie-to "kanonicheskie" podnyatija obraza racional'nyh tochek
P^1(F_5) pri vlozhenii v proektivizaciju trehmernogo predtavslenija.. Vo vsyakom sluchae, stabilizator pryamoj soedinjajushej protivopolozhnye vershiny ikosaedra -- Borelevskaja podgruppa v PSL(2,F_5) (po-moemu).

5 predmetov kak-to mozhno cherez ikosaedr opredelit'. Chto li pokrasit' grani v 5 cvetov, tak chtoby vokrug vershiny byli vse 5 cvetov v opredelennom ciklicheskom porjadke, i togda gruppa simmetrij dejstvuet na mn-ve cvetov?

A ne znaet li kto realizacii grupp simmetrij 4-merhnyh platonovyh tel (H_4 i D_4(?)) kak grupp Chevalley?

Esche J-P Serre interesovalsya v kakie-to nedavnie gody special'nymi izomorfizmami konechnyh grupp Chevalley, tol'ko ja ne znaju, k chemu on prishel.

Profile

Leonid Positselski

December 2025

S M T W T F S
 1 2 3 4 5 6
7 8 9 10 11 1213
1415 16 1718 19 20
21 22 23 2425 26 27
28293031   

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Dec. 28th, 2025 03:48 am
Powered by Dreamwidth Studios