Vek zhivi vek uchis', ili chislo 6
Nov. 29th, 2002 12:54 pmOkazyvaetsya, gruppa perestanovok 6-elementnogo mnozhestva imeet vneshnij avtomorfizm. Ya prochital ob etom zdes':
Consider 6 things, e.g. the numerals 123456. There are 15 non-ordered pairs of them. (Call these "duads.") Also there are 15 ways to divide the original set into three duads, e.g. {(12}{34}{56}}. Call these "synthemes." Five synthemes can be chosen so as to contain each duad exactly once; and there turn out to be exactly six ways to make this choice. You can label these six sets ABCDEF. Then a permutation of 123456 induces a permutation of ABCDEF. A two-cycle such as (12) induces a product of three disjoint two-cycles such as (AB)(CD)(EF), so the map from one permutation to the other cannot be an inner automorphism.
Dovol'no zamyslovataya vse-taki konstrukciya, sopostavlyayuschaya 6-elementnomu mnozhestvu drugoe 6-elementnoe mnozhestvo. Ya esche znayu na etu temu gorazdo bolee prostuyu konstrukciyu, sopostavlyayuschuyu 4-elementnomu mnozhestvu 3-elementnoe mnozhestvo.
Ostal'nye gruppy Sn (pri n ne ravnom 6) vneshnih avtomorfizmov ne imeyut, chto netrudno dokazat', rassmotrev klass sopryazhennosti, sostoyaschij iz transpozicij, i ego obraz pri nashem avtomorfizme. Podrobnosti imeyutsya zdes' (fajl v formate postscript).
Consider 6 things, e.g. the numerals 123456. There are 15 non-ordered pairs of them. (Call these "duads.") Also there are 15 ways to divide the original set into three duads, e.g. {(12}{34}{56}}. Call these "synthemes." Five synthemes can be chosen so as to contain each duad exactly once; and there turn out to be exactly six ways to make this choice. You can label these six sets ABCDEF. Then a permutation of 123456 induces a permutation of ABCDEF. A two-cycle such as (12) induces a product of three disjoint two-cycles such as (AB)(CD)(EF), so the map from one permutation to the other cannot be an inner automorphism.
Dovol'no zamyslovataya vse-taki konstrukciya, sopostavlyayuschaya 6-elementnomu mnozhestvu drugoe 6-elementnoe mnozhestvo. Ya esche znayu na etu temu gorazdo bolee prostuyu konstrukciyu, sopostavlyayuschuyu 4-elementnomu mnozhestvu 3-elementnoe mnozhestvo.
Ostal'nye gruppy Sn (pri n ne ravnom 6) vneshnih avtomorfizmov ne imeyut, chto netrudno dokazat', rassmotrev klass sopryazhennosti, sostoyaschij iz transpozicij, i ego obraz pri nashem avtomorfizme. Podrobnosti imeyutsya zdes' (fajl v formate postscript).
no subject
Date: 2002-12-02 02:58 pm (UTC)0 -> Z -> Z[X4] + Z -> Z[X6] + Z -> Z[X3] -> 0,
gde X4, X6 i X3 sut' chetyreh-, shesti- i trehelementnye mnozhestva s ponyatno kakim dejstviem S4. I ya hochu drugih takih tochnyh chetverok znat', esli oni vdrug suschestvuyut.
Pochemu A5=PSL2(F5), ya mogu ob'yasnit'. Na samom dele, S5=PGL2(F5), i vot pochemu. Yasno, chto PGL2(F5) vkladyvaetsya v S6 -- shest' tochek proektivnoj pryamoj nad F5. Ya utverzhdayu, chto izvestnyj nam vneshnij avtomorfizm S6 perevodit etu podgruppu v stabilizator odnoj iz shesti tochek.
Kak my pomnim iz konstrukcii vneshnego avtomorfizma, eto znachit, chto gruppa PGL2(F5) dolzhna sohranyat' nekotoroe razbienie vseh 15 par razlichnyh tochek proektivnoj pryamoj na 5 troek (takoe chto kazhdaya trojka sostoit iz neperesekayuschihsya par). Vot eto razbienie: dve pary tochek vhodyat v odnu gruppu, esli ih dvojnoe otnoshenie ravno -1 (t.e. mozhno vybrat' koordinaty, v kotoryh pervaya para budet 0 i beskonechnost', a vtoraya 1 i -1).
no subject
Date: 2003-06-12 10:42 pm (UTC)formu na V=F_5^2 ne predstavljajuschuju nul', det = 1, s tochnost'ju do umnozhenija na -1 (eto navernoe pochti to zhe, chto ty govorish' (?)).
Kstati, A_5 eto zhe esche gruppa ikosaedra, kak izvestno, ona zhe podgruppa v SL(2,C) tipa E_8.
Navernoe, trehmernoe predstavlenie PSL(2,F_5) mozhno podnyat' v char 0, potom uvidet', chto rezul'tat opredelen nad R, obraz ego -- gruppa
simmetrij ikosaedra, a pryamye vershin ikosaedra est' kakie-to "kanonicheskie" podnyatija obraza racional'nyh tochek
P^1(F_5) pri vlozhenii v proektivizaciju trehmernogo predtavslenija.. Vo vsyakom sluchae, stabilizator pryamoj soedinjajushej protivopolozhnye vershiny ikosaedra -- Borelevskaja podgruppa v PSL(2,F_5) (po-moemu).
5 predmetov kak-to mozhno cherez ikosaedr opredelit'. Chto li pokrasit' grani v 5 cvetov, tak chtoby vokrug vershiny byli vse 5 cvetov v opredelennom ciklicheskom porjadke, i togda gruppa simmetrij dejstvuet na mn-ve cvetov?
A ne znaet li kto realizacii grupp simmetrij 4-merhnyh platonovyh tel (H_4 i D_4(?)) kak grupp Chevalley?
Esche J-P Serre interesovalsya v kakie-to nedavnie gody special'nymi izomorfizmami konechnyh grupp Chevalley, tol'ko ja ne znaju, k chemu on prishel.