Из-под замка:
0. Ищется в интернете картинка с кубической кривой в вещественной плоскости. Можно даже две -- с одной связной компонентой и с двумя. Вот: это эллиптические кривые. (Например, в статье http://en.wikipedia.org/wiki/Elliptic_curve есть хорошие картинки.)
1. Бывает на числах операция сложения, бывает на ненулевых числах -- умножения. А есть еще целое семейство похожих операций, следующий уровень. С каждым числом можно связать двухместную операцию на неком множестве. Числа образуют прямую, а в этом более сложном случае, получаются кривые. (Если последует вопрос, можно показать картинку, как складывать точки на кубической кривой.)
2. Бывают две отдельные точки, из одной в другую не пройдешь, не выходя за их пределы. А бывает окружность, на ней между двумя точками можно пройти двумя способами -- по часовой стрелке и против. А еще бывает сфера. А еще бывает тор, на нем есть окружности разных типов. Люди это изучали, и придумали производные категории.
0. Ищется в интернете картинка с кубической кривой в вещественной плоскости. Можно даже две -- с одной связной компонентой и с двумя. Вот: это эллиптические кривые. (Например, в статье http://en.wikipedia.org/wiki/Elliptic_curve есть хорошие картинки.)
1. Бывает на числах операция сложения, бывает на ненулевых числах -- умножения. А есть еще целое семейство похожих операций, следующий уровень. С каждым числом можно связать двухместную операцию на неком множестве. Числа образуют прямую, а в этом более сложном случае, получаются кривые. (Если последует вопрос, можно показать картинку, как складывать точки на кубической кривой.)
2. Бывают две отдельные точки, из одной в другую не пройдешь, не выходя за их пределы. А бывает окружность, на ней между двумя точками можно пройти двумя способами -- по часовой стрелке и против. А еще бывает сфера. А еще бывает тор, на нем есть окружности разных типов. Люди это изучали, и придумали производные категории.
no subject
Date: 2012-06-12 09:09 am (UTC)Только в этой длинной точной последовательности, наверно, должны быть в начале AG, BG, CG?
Для понимания.
Я помню построение длинной точной последовательности когомологий из короткой точной последовательности комплексов. Эта длинная последовательность так и получается из первой короткой, если модули достроить до комплексов?
А стрелка из CG должна ведь быть сюрьективной для точности?
Получается, что H1(Z2, Z2)=Z2?
no subject
Date: 2012-06-12 09:47 am (UTC)0 → AG → BG → CG →
H1(G,A) → H1(G,B) → H1(G,C) →
H2(G,A) → H2(G,B) → H2(G,C) →
...
Да, так и получается. Так или иначе, в любой из конструкций, H*(G,M) суть когомологии какого-то комплекса, который строится (однозначно или с использованием произвольного выбора) по G и M. С короткой точной последовательностью модулей коэффициентов связана короткая точная последовательность таких комплексов.
Образом стрелки из CG является ядро отображения H1(G,A) → H1(G,B), в этом состоит точность.
H1(Z/2, Z/2) = Z/2, это верно. Вообще, при тривиальном действии G на М, группа первых когомологий H1(G,M) изоморфна группе всех гомоморфизмов групп G → M.
no subject
Date: 2012-06-12 11:23 am (UTC)>Образом стрелки из CG является ядро отображения H1(G,A) → H1(G,B), в этом состоит точность.
Я имел в виду тот конкретный контрпример выше, где образ BG→CG нулевой, поэтому ядро отображения в H1(G, A) тоже должно быть нулевое.
Можно еще вопросы? :)
Я так понимаю, все это используется для изучения групп и их расширений.
Но в H*(G, A) группы G и A играют разную роль. Есть ли какое-то соответствие между H*(G, A) и H*(A, G)?
Если не ошибаюсь, в алгебр. топологии группа коэффициентов обычно играет вспомогательную роль, используют в основном R или Z, и ее меняют в основном для упрощения вычислений. Так ли это в этой науке?
no subject
Date: 2012-06-12 01:13 pm (UTC)Соответствия между H*(G,A) и H*(A,G) нет, да и области определения у этих двух образований разные (если даже считать, что действие G на A тривиально, то все равно H*(G,A) имеет смысл для произвольной группы G и абелевой A -- хотя можно определить группу H0(G,A) и группу H1(G,A) для неабелева G-модуля A, но с дальнейшими номерами когомологии бывают только с коммутативными коэффициентами).
В этой науке важны когомологии с коэффициентами в произвольных G-модулях, не только в тривиальных. В топологии это соответствует когомологиям произвольных локальных систем. Когомологии группы G с коэффициентами в G-модуле M изоморфны когомологиям топологического пространства K(G,1) с коэффициентами в локальной системе, соответствующей M.
no subject
Date: 2012-06-12 07:32 pm (UTC)Ну я пока воздержусь от дальнейших вопросов. Чтобы дальше спрашивать, надо больше знать, а то вопросы станут совсем глупыми.:)
Спасибо за помощь. Я стал понимать чуть лучше, как это все выглядит, и зачем нужно.
no subject
Date: 2012-06-12 07:55 pm (UTC)