[personal profile] posic
Много примеров точных категорий, в том числе весьма изощренных примеров, можно найти в разных текстах, в том числе, и в моих. А вот простой, естественный пример аддитивной категории с классом точных троек, не являющейся точной категорией.

Пусть G -- (скажем, конечная) группа, R -- (коммутативное) кольцо; нашей аддитивной категорией будет полная подкатегория в категории R[G]-модулей, состоящая из всех R[G]-модулей, индуцированных с R-модулей. Рассмотрим класс всех троек в этой категории, индуцированных с точных троек R-модулей.

Это не точная категория, потому что не выполнены аксиомы замены базы и кобазы. Если взять точную тройку R[G]-модулей A[G] → B[G] → C[G], индуцированную с точной тройки R-модулей A → B → C, и морфизм D[G] → C[G] в нашей аддитивной категории, то построить по этим данным точную тройку A[G] → X[G] → D[G] в нашей категории не получится, да и само расслоенное произведение X[G] объектов B[G] и D[G] над C[G] может не существовать в нашей аддитивной категории.

Потому что морфизм-то R[G]-модулей D[G] → C[G] может не быть индуцированным с морфизма R-модулей! В аксиоме замены базы, входящей в определение точной категории, это может быть любой морфизм в аддитивной категории, точная структура на которой рассматривается. А морфизмы между индуцированными G-модулями бывают всякие-разные.

Отметим, что для этого контрпримера нужно именно кольцо R, поля недостаточно. Потому что если в категории R-модулей все точные тройки расщепимы, то и наш класс точных троек индуцированных R[G]-модулей будет состоять ровно из всех расщепимых троек. И будет просто X[G] = A[G] ⊕ D[G].

Date: 2012-02-16 08:13 pm (UTC)
From: [identity profile] codedot.livejournal.com
s/не точной/неточной/

Date: 2012-02-16 08:32 pm (UTC)
From: [identity profile] posic.livejournal.com
Вы здесь кто вообще такой, чтобы мою орфографию поправлять? По-вашему, здесь рецензируемый журнал, что ли, с вами в роли рецензента?

Или вы решили, что это у меня опечатка? Тогда вы можете вычитать заодно и все остальные мои постинги и представить мне полный список.

July 2025

S M T W T F S
   1 23 45
6789101112
13141516171819
20212223242526
2728293031  

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jul. 7th, 2025 06:07 pm
Powered by Dreamwidth Studios