[personal profile] posic
K. Goodearl, R. Warfield, An introduction to noncommutative Noetherian rings. Cambridge University Press, 2004.

Theorem 13.3 [Artin, Rees]. If R is a noetherian ring and I an ideal of R generated by central elements, then R(I) is noetherian, and hence I satisfies the AR property.

Proof. The noetherian assumption ensures that I can be generated by finitely many central elements, say a1, ..., an. Then R(I) is generated (as a ring) by R together with the central elements a1x, ..., anx. Consequently, R(I) is a homomorphic image of a polynomial ring R[x1,...,xn], and hence it is noetherian by the Hilbert Basis Theorem.

... Как-то я даже не осознавал, что между термином "кольцо Риса" и леммой Артина-Риса есть такая простая прямая связь. Позабыл все, чему учился на первом курсе (когда читал Атью-Макдональда), видимо.

Profile

Leonid Positselski

January 2026

S M T W T F S
     12 3
4 567 89 10
11 12 1314 151617
18192021222324
25262728293031

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jan. 17th, 2026 03:56 pm
Powered by Dreamwidth Studios