[personal profile] posic
K. Goodearl, R. Warfield, An introduction to noncommutative Noetherian rings. Cambridge University Press, 2004.

Theorem 13.3 [Artin, Rees]. If R is a noetherian ring and I an ideal of R generated by central elements, then R(I) is noetherian, and hence I satisfies the AR property.

Proof. The noetherian assumption ensures that I can be generated by finitely many central elements, say a1, ..., an. Then R(I) is generated (as a ring) by R together with the central elements a1x, ..., anx. Consequently, R(I) is a homomorphic image of a polynomial ring R[x1,...,xn], and hence it is noetherian by the Hilbert Basis Theorem.

... Как-то я даже не осознавал, что между термином "кольцо Риса" и леммой Артина-Риса есть такая простая прямая связь. Позабыл все, чему учился на первом курсе (когда читал Атью-Макдональда), видимо.
(will be screened)
(will be screened if not on Access List)
(will be screened if not on Access List)
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

If you are unable to use this captcha for any reason, please contact us by email at support@dreamwidth.org

Profile

Leonid Positselski

January 2026

S M T W T F S
     12 3
4 567 89 10
11 12 1314 151617
18192021222324
25262728293031

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jan. 17th, 2026 05:33 pm
Powered by Dreamwidth Studios