Алгебра и топология: спорный тезис
Dec. 1st, 2010 04:13 amЗадачи гомологической алгебры имеют решения. Поставьте себе задачу гомологической алгебры, разумную (объективно) и интересную (для вас), работайте над ней, и через N десятилетий у вас будет прекрасное решение, устраивающее вас во всех отношениях. Например, задача о неограниченных производных категориях была полностью решена прямо на моих глазах. Задача о правильном утончении структуры триангулированной категории является самым известным на сегодняшний день кандидатом в контрпримеры к моему тезису. Последнее время над ней много работают, и я думаю, что полное решение не за горами.
Важнейшие задачи алгебраической топологии не имеют решений. Надежду и попытки получить полные решения важнейших задач своей науки топологи в последнее время, кажется, вообще оставили. Вместо этого они развивают методы или преодолевают препятствия к естественным конструкциям. Каждый новый метод позволяет отщипнуть еще немножко от краешка неразрешимой проблемы и, в лучшем случае, посмотреть на нее в целом с новой стороны, но он ее не решает. Конкретное препятствие к конструкции можно преодолеть, но вполне естественной формулировки у нее нет и никогда не будет.
Задача о вычислении гомотопических групп сфер сегодня не ближе к своему решению, чем в 1930-х, когда она была поставлена. От нее поотщипывали по краям, и неплохо поотщипывали, это да. Продолжают отщипывать и сейчас. Но я не знаю, чтобы кто-либо из современных специалистов пытался или надеялся ее полностью решить. Модели для спектров изобретаются, и каждая следующая может быть лучше предыдущей, но ответа на вопрос, что такое спектр, кроме как с точностью до гомотопии, нет и, насколько можно судить, не будет. Задача о классификации узлов столь же неразрешима сейчас, как и когда-либо. И т.д.
Важнейшие задачи алгебраической топологии не имеют решений. Надежду и попытки получить полные решения важнейших задач своей науки топологи в последнее время, кажется, вообще оставили. Вместо этого они развивают методы или преодолевают препятствия к естественным конструкциям. Каждый новый метод позволяет отщипнуть еще немножко от краешка неразрешимой проблемы и, в лучшем случае, посмотреть на нее в целом с новой стороны, но он ее не решает. Конкретное препятствие к конструкции можно преодолеть, но вполне естественной формулировки у нее нет и никогда не будет.
Задача о вычислении гомотопических групп сфер сегодня не ближе к своему решению, чем в 1930-х, когда она была поставлена. От нее поотщипывали по краям, и неплохо поотщипывали, это да. Продолжают отщипывать и сейчас. Но я не знаю, чтобы кто-либо из современных специалистов пытался или надеялся ее полностью решить. Модели для спектров изобретаются, и каждая следующая может быть лучше предыдущей, но ответа на вопрос, что такое спектр, кроме как с точностью до гомотопии, нет и, насколько можно судить, не будет. Задача о классификации узлов столь же неразрешима сейчас, как и когда-либо. И т.д.
no subject
Date: 2010-12-06 06:45 pm (UTC)Когда-то казалось, что задача вычисления К-функторов от Z куда сложнее, чем задача вычисления групп сфер. K_3 посчитали с большим трудом, используя крайне нетривиальные результаты Суле, K_4 вообще недавно. А затем оказалось, что результаты Воеводского позволяют описывать 2-кручение везде. К-функторы от Z оказались не такими уж сложными. Есть, конечно, открытые задачи, типа верно ли, что K_{4n}(Z)=0, но все же, прогресс именно в описании достигнут.
Гомотопические группы многих естественных пространств намного сложнее, чем группы сфер. Группы сфер - это кирпичики, из которых построена существенная часть теории гомотопий клеточных пространств. Это природа с волшебством и загадками, но вполне может оказаться, что описание проявится.