[personal profile] posic
Пусть X -- гладкое аффинное алгебраическое многообразие над полем (скажем, нулевой характеристики), и пусть Y -- открытое аффинное подмногообразие в X. Пучок колец дифференциальных операторов DX на X квазикогерентен как пучок OX-модулей слева и справа, поэтому

O(Y)⊗O(X)D(X) = D(Y) = D(X)⊗O(X)O(Y).

Отсюда легко следует, что если M -- (скажем, левый) D(X)-модуль, то тензорное произведение O(Y)⊗O(X)M имеет естественную структуру D(Y)-модуля. При этом если F -- плоский левый D(X)-модуль, то O(Y)⊗O(X)F -- плоский левый D(Y)-модуль. То же самое для правых модулей.

Задачка: пусть дополнительно к вышеперечисленному дано кольцо A и гомоморфизм колец A → D(X). Пусть M -- (скажем, левый) D(X)-модуль, плоский над A. То есть, ограничение скаляров с D(X) до A снабжает M структурой A-модуля; предположим, что этот A-модуль M плоский. Рассмотрим D(Y)-модуль O(Y)⊗O(X)M. Ограничение скаляров с D(Y) до D(X) и далее до A снабжает O(Y)⊗O(X)M структурой A-модуля. Верно ли, что A-модуль O(Y)⊗O(X)M плоский?

За то, что этот вопрос на самом деле является открытым, не поручусь. Но я уперся в эту задачку сегодня, попробовал решить ее, и не смог.

July 2025

S M T W T F S
   1 23 45
67 8 9 10 1112
13141516171819
20212223242526
2728293031  

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jul. 12th, 2025 04:20 am
Powered by Dreamwidth Studios