[personal profile] posic
Пусть A -- топологическое градуированное кольцо, в котором однородные двусторонние открытые идеалы, факторкольца по которым градуированно нетеровы, образуют базу окрестностей нуля ("про-нетерово градуированное кольцо"). Пусть A снабжено непрерывным дифференциалом d (легко видеть, что в этом случае однородные двусторонние дифференциальные открытые идеалы образуют базу окрестностей нуля). Тогда копроизводная категория дискретных DG-модулей над A эквивалентна гомотопической категории дискретных DG-модулей, инъективных в категории дискретных градуированных A-модулей.

В самом деле, непрерывные гомоморфизмы абелевых групп из A в дискретную группу Q/Z образуют инъективный дискретный A-модуль. Дискретный A-модуль инъективен тогда и только тогда, когда аннулятор любого открытого двустороннего идеала J⊂A в этом модуле инъективен как A/J-модуль. Так что класс инъективных дискретных модулей замкнут относительно прямых сумм. Для любого дискретного градуированного A-модуля M, универсальный DG-модуль над A, содержащий M, дискретен, а коядро вложения M в этот модуль изоморфно M со сдвинутой на единицу градуировкой, и так далее.

Как обычно, условие нетеровости можно заменить на условие конечности гомологической размерности категории дискретных A-модулей (но требование, чтобы двусторонние идеалы образовывали базу топологии все равно, похоже, нужно для построения инъективных A-модулей можно ослабить до требования, чтобы базу топологии образовывали левые идеалы, если мы рассматриваем левые A-модули). Кроме того, все обобщается на случай CDG-кольца очевидным образом.

Ср. http://posic.livejournal.com/196141.html

Date: 2008-01-20 12:17 am (UTC)
From: [identity profile] hippie57.livejournal.com
Кстати, поскольку категория копроизводная, то в ней есть выжившие точные комплексы, так ведь? Это интересно, поскольку на инд-схеме (в примерах) есть комплексы в духе Кузена (Д-модулей, но оно же и Омега-модулей), эти комплексы точны, но изображают из себя "модуль, сидящий в бесконечности", то есть недискретное образование, например, правый Д-модуль "старших форм" (которого, естественно, на такой инд-схеме нет).

Profile

Leonid Positselski

January 2026

S M T W T F S
     12 3
4 567 89 10
11 12 1314 151617
1819 2021 22 2324
25 26 27 28293031

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jan. 28th, 2026 05:45 pm
Powered by Dreamwidth Studios