Feb. 7th, 2016
Ошибка вышла, вот о чем молчит наука
Feb. 7th, 2016 09:25 pmПусть A -- DG-алгебра над полем k, когомологически градуированная целыми числами. Предположим, что Hi(A) = 0 для всех i < 0. Существует ли DG-алгебра B, связанная c A цепочкой квазиизоморфизмов DG-алгебр, такая что Bi = 0 для всех i < 0 ?
В замечании 1 в разделе 1.9 мемуара Two kinds of derived categories ... предлагался контпример DG-алгебры A, для которой, якобы, ответ на этот вопрос отрицательный. Вернувшись сейчас, по случаю, к этому вопросу, я вижу, однако, что контрпример тот ошибочный. Там действительно Hi(A) = 0 для i < 0, однако, обозначив через B факторалгебру A по идеалу, порожденному элементами отрицательной когомологической градуировки и их дифференциалами, можно получить DG-алгебру, сосредоточенную в неотрицательных когомологических степенях и квазиизоморфную A.
Вопрос, сформулированный в первом параграфе, таким образом, остается (насколько я знаю) открытым.
В замечании 1 в разделе 1.9 мемуара Two kinds of derived categories ... предлагался контпример DG-алгебры A, для которой, якобы, ответ на этот вопрос отрицательный. Вернувшись сейчас, по случаю, к этому вопросу, я вижу, однако, что контрпример тот ошибочный. Там действительно Hi(A) = 0 для i < 0, однако, обозначив через B факторалгебру A по идеалу, порожденному элементами отрицательной когомологической градуировки и их дифференциалами, можно получить DG-алгебру, сосредоточенную в неотрицательных когомологических степенях и квазиизоморфную A.
Вопрос, сформулированный в первом параграфе, таким образом, остается (насколько я знаю) открытым.