Feb. 1st, 2012

Хочется не писать работ на модные темы, но не всегда удается избежать.

(Почему не удается? Потому что на самом деле мне просто наплевать, что у них там модно и что нет. Про что пишется, про то и пишу.)
нет подлежащего градуированного векторного пространства. Точнее сказать, такое векторное пространство можно определить, и даже так, чтобы оно было функтором на категории искривленных А-бесконечность модулей и А-бесконечность морфизмов между ними.

Но такие функторы не будут образовывать коммутативных диаграмм с функторами ограничения скаляров по искривленным А-бесконечность морфизмам искривленных А-бесконечность алгебр. Другими словами, функтор подлежащего градуированного векторного пространства искривленного А-бесконечность модуля меняется на другой (похожий) функтор при замене искривленной А-бесконечность алгебры на искривленно А-бесконечность изоморфную ей.

В искривленной DG- (а не А-бесконечность) ситуации ничего подобного не происходит.

Разумеется, слово "векторное пространство" выше не следует понимать буквально. В ситуации над полем не бывает никаких "полноценно искривленных" А-бесконечность морфизмов искривленных А-бесконечность алгебр (потому что формальный степенной ряд с ненулевым свободным членом нельзя подставить в другой формальный степенной ряд). Чтобы наблюдать описанный эффект, нужно работать над полным локальным кольцом.

P.S. Ага, а подлежащее градуированное векторное пространство (т.е. на самом деле модуль над кольцом коэффициентов, конечно) искривленной А-бесконечность алгебры вообще не является функтором на категории искривленных А-бесконечность алгебр и искривленных А-бесконечность морфизмов между ними.

September 2025

S M T W T F S
  1 2 3 4 5 6
7 8 9 10 11 1213
14 15 16 17 18 19 20
21 22 23 24 25 26 27
282930    

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Sep. 27th, 2025 11:47 am
Powered by Dreamwidth Studios