[personal profile] posic
Пусть A -- абелева категория с множеством образующих, в которой существуют произвольные прямые пределы и функтор Hom из любого объекта сохраняет λ-направленные прямые пределы для достаточно больших кардиналов λ.

Пусть S -- какое-то множество объектов категории A; обозначим через C класс объектов, ExtA1-ортогональных справа к S и через F класс объектов, ExtA1-ортогональных слева к C.

Пусть X -- объект категории A, который можно вложить в объект из класса C. Тогда его можно вложить в объект из класса C таким образом, что коядро будет принадлежать классу F. При этом это коядро будет трансфинитно-итерированным расширением объектов из S, в смысле (не обязательно точного) направленного прямого предела.

Обратное верно даже в большей общности: в любой абелевой категории класс объектов, Ext1-ортогональных слева к фиксированному объекту справа, замкнут относительно трансфинитно-итерированных расширений в смысле направленного прямого предела (тех из них, которые существуют, в смысле, существуют необходимые для их построения прямые пределы).

Доказательства следуют в русле теоремы 2.5 и леммы 4.4 работы J. Rosicky, "Flat covers and factorizations", Journ. of Algebra 253, 2002 (а также по ссылке от теоремы 2.5 и двойственной версии леммы 4.4).

Current mood: не зря съездил в Брно!

July 2025

S M T W T F S
   1 23 45
6789101112
13141516171819
20212223242526
2728293031  

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jul. 8th, 2025 09:04 am
Powered by Dreamwidth Studios