[personal profile] posic
Конструкция тензорного произведения имеет смысл для двух матричных факторизаций двух разных потенциалов -- глобальных сечений одного и того же линейного расслоения на схеме. Матричным факторизациям M и N глобальных сечений w' и w'' линейного расслоения L на схеме X сопоставляется матричная факторизация M ⊗OX N глобального сечения w' + w'' того же линейного расслоения L на X.

Недостаток операции тензорного произведения матричных факторизаций в том, что у нее нет производной версии. Проблема в том, что это должен был бы быть левый производный функтор. Современной науке неизвестна разумная конструкция обычной производной категории матричных факторизаций, а в копроизводных категориях бесконечными левыми резольвентами пользоваться нельзя. Ну или, точнее сказать, можно определить производный функтор тензорного произведения матричных факторизаций, компоненты (хот бы одной из) которых имеют конечную плоскую размерность, что-нибудь такое. Аналогичная проблема возникает в связи с функтором обычного обратного образа матричных факторизаций при схемном морфизме бесконечной плоской размерности.

С другой стороны, котензорное произведение квазикогерентных матричных факторизаций можно определить, пользуясь ковариантной двойственностью Серра-Гротендика для матричных факторизаций, аналогично тому, как это делается для комплексов квазикогерентных пучков. Так же, как и тензорное произведение, операция котензорного произведения сопоставляет двум матричным факторизациям M и N двух разных глобальных сечений одного и того же линейного расслоения на схеме матричную факторизацию суммы этих двух глобальных сечений.

Из трех формул для частных случаев котензорного произведения комплексов квазикогерентных пучков, описанных в постинге http://posic.livejournal.com/981857.html и следующем (по ссылке выше), для матричных факторизаций сохраняют силу последние две. При этом в случае с третьей формулой (использующей внешнее тензорное произведение) надо предполагать, что L = OX.

Profile

Leonid Positselski

January 2026

S M T W T F S
     12 3
4 567 89 10
11 12 1314 151617
1819 2021 22 2324
25 26 2728293031

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jan. 28th, 2026 03:00 am
Powered by Dreamwidth Studios