[personal profile] posic
Верно ли, что квазинаивное ко-контра соответствие трасформирует производный функтор прямого образа квазикогерентных пучков Rf* в производный функтор прямого образа контрагерентных копучков Lf! при любом морфизме f нетеровых схем конечной размерности Крулля? Для морфизма квазикомпактных полуотделимых схем (случай "наивного ко-контра соответствия") это у меня давно доказано.

Проблема в том, что в "наивном" случае функторы ко-контра соответствия строятся как контрагерентный Hom из структурного пучка и контратензорное произведение со структурным пучком, в то время как в "квазинаивном" случае приходится использовать вялую резольвенту структурного пучка. Ну, просто потому, что в конструкциях и доказательствах фигурируют функторы прямого образа с вложений аффинных открытых подсхем, так что надо следить за приспособленностью к таким прямым образам.

Согласование же ко-контра соответствия с прямыми образами (ко)пучков требует рассмотрения обратных образов этих самых пучков коэффициентов контрагерентного Hom'а и контратензорного произведения. А вялые пучки редко бывают плоски, и вообще непонятно, как можно добиться от квазикогерентного пучка одновременной приспособленности к прямому и обратному образу.

В результате похоже на то, что доказать согласованность квазинаивного ко-контра соответствия с прямыми образами удастся только для плоских морфизмов. Получается, что есть два функтора между производными категориями квазикогерентных пучков, связанные с морфизмом нетеровых схем, причем эти два функтора естественно изоморфны а) когда схемы полуотделимы, б) когда морфизм плоский. Выглядит несколько нелепо.

Profile

Leonid Positselski

February 2026

S M T W T F S
1 2 34 5 6 7
891011121314
15161718192021
22232425262728

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Feb. 10th, 2026 01:52 pm
Powered by Dreamwidth Studios