Контрамодули и модули кокручения - 2
Sep. 21st, 2012 05:03 pmПусть S -- нетерово коммутативное кольцо, I ⊂ S -- идеал, и R -- I-адическое пополнение S, снабженное I-адической топологией.
Теорема. Для любых двух R-контрамодулей P и Q, естественное отображение ExtR*(Q,P) → ExtS*(Q,P), где ExtR обозначает группы Ext в категории R-контрамодулей, а ExtS -- в категории S-модулей, является изоморфизмом.
Доказательство: изоморфизм между группами HomR и HomS известен из теоремы B.1.1(1) статьи 1202.2697. Очевидно, достаточно доказать теорему в случае, когда Q = R[[X]] -- свободный R-контрамодуль. Поэтому желаемое утверждение вытекает из следующих двух лемм.
Лемма 1. Свободный R-контрамодуль F = R[[X]] является плоским S-модулем, и тензорное произведение S/I ⊗S R[[X]] изоморфно свободному S/I-модулю S/I[X].
Доказательство. Поскольку идеал I конечно порожден в S и идеалы RIn замкнуты в R, второе утверждение очевидно. Чтобы доказать первое, нужно установить, что для любого конечно порожденного S-модуля M имеется естественный изоморфизм M ⊗S R[[X]] = (M⊗SR)[[X]], где M⊗SR есть I-адическое пополнение M, так что на нем есть естественная полная топология, позволяющая определить группу (M⊗SR)[[X]]. Два функтора совпадают на конечно порожденных проективных модулях M, первый из них очевидно точен справа, а второй точен с обеих сторон.
Лемма 2. Для любого плоского S-модуля F, такого что S/I ⊗S F -- проективный S/I-модуль, и любого R-контрамодуля P, имеет место зануление ExtS>0(F,P) = 0.
Доказательство. Заменив, при необходимости, контрамодуль P на его двучленную левую резольвенту, можно считать, что P равен проективному пределу своих фактормодулей P/InP. Имеем ExtS*(F, P/InP) = ExtS/In(F/InF, P/InP). Теперь нам понадобится следующая (стандартная, насколько я понимаю)
Лемма 3. Если J -- нильпотентный идеал в ассоциативном кольце A и G -- плоский A-модуль, такой что A/J-модуль G/JG проективен, то и A-модуль G проективен.
Доказательство: использовать подъем идемпотентного эндоморфизма по модулю нильпотентного идеала и (очевидную) лемму Накаямы для такого идеала.
Итак, ExtS>0(F, P/InP) = 0. С другой стороны, в силу того же утверждения о проективности S/In-модуля F/InF, группа HomS(F, P/InP) = HomS/In(F/InF, P/InP) сюръективно отображается на HomS/In(F/InF, P/In−1P) = HomS(F, P/In−1P). Теперь остается воспользоваться следующим общим результатом.
Лемма 4. Пусть A -- ассоциативное кольцо, L -- левый А-модуль, и Mn -- проективная система левых A-модулей, занумерованных натуральными числами, и сюръективных отображений между ними. Тогда если ExtA>0(L,Mn) = 0 для всех n, то ExtA*(L, lim Mn) = lim* HomA(L,Mn). В частности, если lim1 HomA(L, Mn) = 0, то ExtA>0(L, lim Mn) = 0.
Доказательство. Заменить А-модуль L на его левую проективную резольвенту.
Теорема. Для любых двух R-контрамодулей P и Q, естественное отображение ExtR*(Q,P) → ExtS*(Q,P), где ExtR обозначает группы Ext в категории R-контрамодулей, а ExtS -- в категории S-модулей, является изоморфизмом.
Доказательство: изоморфизм между группами HomR и HomS известен из теоремы B.1.1(1) статьи 1202.2697. Очевидно, достаточно доказать теорему в случае, когда Q = R[[X]] -- свободный R-контрамодуль. Поэтому желаемое утверждение вытекает из следующих двух лемм.
Лемма 1. Свободный R-контрамодуль F = R[[X]] является плоским S-модулем, и тензорное произведение S/I ⊗S R[[X]] изоморфно свободному S/I-модулю S/I[X].
Доказательство. Поскольку идеал I конечно порожден в S и идеалы RIn замкнуты в R, второе утверждение очевидно. Чтобы доказать первое, нужно установить, что для любого конечно порожденного S-модуля M имеется естественный изоморфизм M ⊗S R[[X]] = (M⊗SR)[[X]], где M⊗SR есть I-адическое пополнение M, так что на нем есть естественная полная топология, позволяющая определить группу (M⊗SR)[[X]]. Два функтора совпадают на конечно порожденных проективных модулях M, первый из них очевидно точен справа, а второй точен с обеих сторон.
Лемма 2. Для любого плоского S-модуля F, такого что S/I ⊗S F -- проективный S/I-модуль, и любого R-контрамодуля P, имеет место зануление ExtS>0(F,P) = 0.
Доказательство. Заменив, при необходимости, контрамодуль P на его двучленную левую резольвенту, можно считать, что P равен проективному пределу своих фактормодулей P/InP. Имеем ExtS*(F, P/InP) = ExtS/In(F/InF, P/InP). Теперь нам понадобится следующая (стандартная, насколько я понимаю)
Лемма 3. Если J -- нильпотентный идеал в ассоциативном кольце A и G -- плоский A-модуль, такой что A/J-модуль G/JG проективен, то и A-модуль G проективен.
Доказательство: использовать подъем идемпотентного эндоморфизма по модулю нильпотентного идеала и (очевидную) лемму Накаямы для такого идеала.
Итак, ExtS>0(F, P/InP) = 0. С другой стороны, в силу того же утверждения о проективности S/In-модуля F/InF, группа HomS(F, P/InP) = HomS/In(F/InF, P/InP) сюръективно отображается на HomS/In(F/InF, P/In−1P) = HomS(F, P/In−1P). Теперь остается воспользоваться следующим общим результатом.
Лемма 4. Пусть A -- ассоциативное кольцо, L -- левый А-модуль, и Mn -- проективная система левых A-модулей, занумерованных натуральными числами, и сюръективных отображений между ними. Тогда если ExtA>0(L,Mn) = 0 для всех n, то ExtA*(L, lim Mn) = lim* HomA(L,Mn). В частности, если lim1 HomA(L, Mn) = 0, то ExtA>0(L, lim Mn) = 0.
Доказательство. Заменить А-модуль L на его левую проективную резольвенту.