[personal profile] posic
Продолжение http://posic.livejournal.com/839838.html и http://posic.livejournal.com/839999.html .

Лемма 1. Пусть R → S -- конечный морфизм нетеровых коммутативных колец, и пусть P -- плоский модуль кокручения над кольцом R. Тогда S⊗RP -- плоский модуль кокручения над кольцом S.

Доказательство: согласно основной теореме статьи Енокс-84 R-модуль P можно представить (например) как прямое слагаемое бесконечного произведения пополнений локальных колец точек спектра кольца R. Достаточно рассмотреть случай одного такого пополнения Rp. Тогда S⊗R Rp есть пополнение кольца S по идеалу Sp. Если qi -- простые идеалы в S, лежащие над p, то они образуют конечное множество (Мацумура Commutative ring theory упр. 9.3), пополнение S по Sp совпадает с пополнением S по произведению всех qi (поскольку системы степеней этих идеалов конфинальны, по крайней мере, после локализации по R \ p), последнее пополнение есть произведение пополнений по отдельным qi (loc. cit. теорема 8.15). По той же теореме Енокса, такие пополнения являются плоскими S-модулями кокручения.

Лемма 2. Пусть R → S -- конечный морфизм нетеровых коммутативных колец конечной размерности Крулля. Тогда S-модуль Q является S-модулем кокручения титтк он является R-модулем кокручения.

Доказательство: часть "только тогда" -- частный случай общего результата о сохранении свойства кокручения при ограничении скаляров по любому морфизму ассоциативных колец. Чтобы доказать "тогда", отметим, что согласно Рейно-Грюзону всякий плоский S-модуль имеет конечную правую резольвенту из плоских S-модулей кокручения. Поэтому достаточно проверить, что ExtS>0(G,Q) = 0 для любого плоского S-модуля кокручения G. Из доказательства леммы 1 ясно, что G является прямым слагаемым S-модуля вида S⊗RF для некоторого плоского R-модуля кокручения F. Теперь ExtS>0(S⊗RF, Q) = ExtR>0(F,Q) = 0.

Лемма 3. Пусть R → S -- морфизм из когерентного кольца R в кольцо S, являющееся конечно представимым R-модулем в индуцированной структуре. Пусть F -- плоский R-модуль кокручения и P -- плоский R-модуль кокручения. Тогда естественный гомоморфизм S-модулей S ⊗R HomR(F,P) → HomS(S⊗RF, S⊗RP) является изоморфизмом.

Доказательство: отображение S ⊗R HomR(F,P) → HomR(F, S⊗RP) является изоморфизмом согласно следствию 1.6.3(с) из 1209.2995.
(will be screened)
(will be screened if not on Access List)
(will be screened if not on Access List)
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

If you are unable to use this captcha for any reason, please contact us by email at support@dreamwidth.org

June 2025

S M T W T F S
1 2 3 4 56 7
8 9 10 1112 13 14
15 161718192021
22232425262728
2930     

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jun. 17th, 2025 01:22 am
Powered by Dreamwidth Studios