[personal profile] posic
В развитие предыдущего математического постинга. Пусть R -- коммутативное кольцо, I ⊂ R -- идеал. Напомним, что R-модуль P называется (R,I)-контрамодулем, если ExtR1(R[s−1],P) = 0 для любого s ∈ R и ExtR0,1(R[s−1],P) = 0 для любого s ∈ I. Геометрически это означает, что P -- (локально контраприспособленный) контрагерентный копучок контрамодулей на формальной окрестности замкнутой подсхемы нулей I в спектре R.

Утверждение: категория (R,I)-контрамодулей эквивалентна категории (локально контраприспособленных) контрагерентных копучков на Spec R, равных нулю в ограничении на дополнение к замкнутой подсхеме нулей I.

Доказательство: утверждение тавтологично. По определению, категория контрагерентных копучков на Spec R эквивалентна категории R-модулей P со свойством ExtR1(R[s−1],P) = 0 для любого s ∈ R. Дополнение к замкнутой подсхеме нулей I в Spec R покрывается своими открытыми подмножествами вида Spec R[s−1], где s пробегает элементы I (или какую-нибудь систему образующих I как идеала). Ограничение контрагерентного копучка на Spec R, соответствующего R-модулю P, на главное открытое подмножество Spec R[s−1] ⊂ Spec R, соответствует R[s−1]-модулю HomR(R[s−1],P). Конец доказательства.

Что-то важное должно проистекать из этой тавтологии, но я не понимаю пока, что.
(will be screened)
(will be screened if not on Access List)
(will be screened if not on Access List)
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

If you are unable to use this captcha for any reason, please contact us by email at support@dreamwidth.org

June 2025

S M T W T F S
1 2 3 4 56 7
8 9 10 1112 13 14
15 16 17 18 19 2021
22232425262728
2930     

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jun. 22nd, 2025 08:12 am
Powered by Dreamwidth Studios