Классификация статей
Jul. 26th, 2012 02:15 am![[personal profile]](https://www.dreamwidth.org/img/silk/identity/user.png)
Понял, в чем состоит правильная аналогия: текст про слабо искривленные алгебры -- это такой второй инсталлмент текста про два рода производных категорий. А текст про контрагерентные копучки -- это второй инсталлмент полубесконечного текста. Вот настолько одно и есть труднее и нетривиальнее другого (по крайней мере, если рассматривать полубесконечный текст без доказательства теоремы сравнения).
При этом по уровню общности контрагерентный текст представляет собой переход к частному случаю полубесконечного текста. И даже не в целом к частному случаю, а к частному случаю "двухэтажной" (в противоположность "трехэтажной") части -- той, которая посвящена кокольцам, а не полуалгебрам над кокольцами.
Потому что схема (да, в общем-то, и стэк) -- частный случай кокольца. Ну, или в любом случае квазикомпактная полуотделимая схема.
Кому объяснишь, что иной переход к частному случаю стоит того, чтобы посвятить ему месяцы работы и многие десятки страниц текста? Видимо, тому, кто понимает, что значит "максимальная естественная общность" и движение от общего к частному. Но кто ж это в наши дни понимает?
При этом по уровню общности контрагерентный текст представляет собой переход к частному случаю полубесконечного текста. И даже не в целом к частному случаю, а к частному случаю "двухэтажной" (в противоположность "трехэтажной") части -- той, которая посвящена кокольцам, а не полуалгебрам над кокольцами.
Потому что схема (да, в общем-то, и стэк) -- частный случай кокольца. Ну, или в любом случае квазикомпактная полуотделимая схема.
Кому объяснишь, что иной переход к частному случаю стоит того, чтобы посвятить ему месяцы работы и многие десятки страниц текста? Видимо, тому, кто понимает, что значит "максимальная естественная общность" и движение от общего к частному. Но кто ж это в наши дни понимает?