[personal profile] posic
Все не так, как я думал. Комодули над AS-горенштейновыми коалгебрами (как и модули над AS-горенштейновыми алгебрами) НЕ образуют категорий Калаби-Яу. Плюньте в наглые глаза тех неучей, что говорят вам обратное.

Правда состоит в том, что на производной категории конечномерных комодулей над AS-горенштейновой коалгеброй функтор Серра является композицией гомологического сдвига на горенштейнову размерность и функтора, индуцированного автоэквивалентностью абелевой категории комодулей. Последняя, на самом деле, индуцирована автоморфизмом AS-горенштейновой коалгебры.

У AS-горенштейновой коалгебры C есть канонический автоморфизм, индуцирующий на ExtC*(k,k) канонический "фробениусов" автоморфизм алгебры Ext как фробениусовой (супер)алгебры. Подкруткой на этот автоморфизм, наряду с гомологическим сдвигом, как раз и отличаются функторы 1. и 2., описанные здесь.

Единственный случай, который я сейчас вижу, когда можно утверждать, что этот автоморфизм тождественный -- когда DG-алгебру, считающую ExtC*(k,k), можно связать цепочкой квазиизоморфизмов с какой-то (супер)коммутативной DG-алгеброй. Например, производная категория нильпотентных модулей над нильпотентной алгеброй Ли (упоминаемая по первой ссылке) является Калаби-Яу.

Profile

Leonid Positselski

February 2026

S M T W T F S
1 2 34 5 6 7
89 1011121314
15161718192021
22232425262728

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Feb. 12th, 2026 08:57 am
Powered by Dreamwidth Studios