Неслабое обобщение MRL-95
May. 11th, 2010 02:03 pmу меня, кажется, получилось. Пусть E -- малая точная категория и J -- класс объектов в E, порождающий всю E с помощью расширений. Рассмотрим большую градуированную алгебру А = (ExtnE(X,Y)), где X и Y пробегают J, а n -- неотрицательные целые. Пусть qA -- "квадратичная часть" алгебры A. Тогда если отображение qA → A биективно в градуировке 2 и инъективно в градуировке 3, и если алгебра qA кошулева, то qA = A.
Следствие: пусть точная категория E c классом объектов J как выше вложена в триангулированную категорию D в качестве точной подкатегории, замкнутой относительно расширений. Тогда если большая градуированная алгебра B = (HomD(X,Y[n])), где опять X и Y пробегают J, а n -- неотрицательное целое, кошулева, то ExtnE(X,Y) = HomD(X,Y[n]) для любых X, Y из E.
Кошулевость здесь понимается в новейшем смысле, т.е. вообще говоря без всяких условий плоскости/проективности. Если условия плоскости выполнены, получается известная ранее плоская кошулевость.
Следствие: пусть точная категория E c классом объектов J как выше вложена в триангулированную категорию D в качестве точной подкатегории, замкнутой относительно расширений. Тогда если большая градуированная алгебра B = (HomD(X,Y[n])), где опять X и Y пробегают J, а n -- неотрицательное целое, кошулева, то ExtnE(X,Y) = HomD(X,Y[n]) для любых X, Y из E.
Кошулевость здесь понимается в новейшем смысле, т.е. вообще говоря без всяких условий плоскости/проективности. Если условия плоскости выполнены, получается известная ранее плоская кошулевость.