[personal profile] posic
Нашел в ящике стола бумажку года примерно 96-го. Переписываю в компьютер.

Как известно, K2n(Fq) = 0 и K2n-1(Fq) = μqn-1⊗n; очевидно, это означает, что H1(Fq,Z(n)) = μqn-1⊗n при n > 0 и Hs(Fq,Z(n)) = 0 для n≠0, s≠1. Тот же ответ можно получить, посчитав Hs(Fq,Z(n)) через Hs(Fq,Q(n)) и Hs(Fq,Q/Z(n)). Переходя к прямому пределу, получаем K2n-1(Fq) ≅ Q/(Z[q-1]), где Фробениус FrFq действует умножением на qn.

а) Мотивы Тейта над Fq с Z[q-1]-коэффициентами: категория конечно-фильтрованных конечно-порожденных абелевых групп (M,F) с убывающей фильтрацией F, где действие q на (M,F) обратимо, снабженных расщеплением М⊗ZQ = grFM⊗ZQ над Q.

б) Мотивы Тейта над Fq с Z-коэффициентами: категория фильтрованных абелевых групп (M,F), снабженных расщеплением M⊗ZZ(p) = grFM⊗ZZ(p) над локализацией Z(p) кольца Z по простому идеалу pZ, где q = pk.

в) Мотивы Тейта над Fq с Z[q-1]-коэффициентами: категория фильтрованных абелевых групп (M,F) с обратимым действием q на (M,F) вместе с оператором φ: (M,F) → (M,F), таким что его действие на присоединенном факторе grFiφ: grFiM → grFiM есть умножение на qi.

г) Мотивы Тейта над Fq с Z-коэффициентами: категория фильтрованных абелевых групп (M,F) вместе с набором операторов φ(i): FiM → FiM, таких что ограничение φ(i) на FjM есть qj-iφ(j) и действие φ(i) на grFjM есть умножение на qj-i (где j≥i).

(Теперь хорошо бы еще мотивы Артина-Тейта над Fq c целыми коэффициентами в том же духе описать.)

Profile

Leonid Positselski

January 2026

S M T W T F S
     12 3
4 567 89 10
11 12 1314 151617
1819 2021 22 2324
25 26 2728293031

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jan. 27th, 2026 07:42 pm
Powered by Dreamwidth Studios