1. Нильпотентные квадратично-линейные алгебры, приспособленность к функтору адического пополнения по идеалу аугментации, равенство когомологий алгебры и ее адического пополнения.
2. Рост/rate гомологий конечно-порожденных неградуированных алгебр, несуществование конечно-порожденной кошулевой фильтрации на обертывающей алгебре положительной части Вирасоро/Каца-Муди и т.п.
3. (Ко)гомологии Хохшильда кошулевых алгебр, поведение при квадратичной двойственности (плюс то же для циклических гомологий и т.д.).
4. (маловажное) Подробное доказательство невозможности восстановления ряда Пуанкаре (от двух переменных) квадратичной алгебры по такому же ряду двойственной алгебры.
Сюжет про rate произведений Сегре и подалгебр Веронезе, кажется, все-таки вошел... (Записываю по памяти, в книгу я сейчас не заглядывал.)
2. Рост/rate гомологий конечно-порожденных неградуированных алгебр, несуществование конечно-порожденной кошулевой фильтрации на обертывающей алгебре положительной части Вирасоро/Каца-Муди и т.п.
3. (Ко)гомологии Хохшильда кошулевых алгебр, поведение при квадратичной двойственности (плюс то же для циклических гомологий и т.д.).
4. (маловажное) Подробное доказательство невозможности восстановления ряда Пуанкаре (от двух переменных) квадратичной алгебры по такому же ряду двойственной алгебры.
Сюжет про rate произведений Сегре и подалгебр Веронезе, кажется, все-таки вошел... (Записываю по памяти, в книгу я сейчас не заглядывал.)
no subject
Date: 2009-10-17 08:09 pm (UTC)no subject
Date: 2009-10-17 08:17 pm (UTC)no subject
Date: 2009-10-17 08:20 pm (UTC)no subject
Date: 2009-10-17 08:35 pm (UTC)Явный контрпример к 4 был выписан еще в моей заметке в Функане, но в аргументе стояла отсылка к некому описанию когомологий произведения Сегре произвольной алгебры на кошулеву. Такое описание появилось в книжке, но применение его к 4 в книжке не обсуждается. Зато там объясняется на пальцах, как получается, что восстановить одни размерности Ext'ов по другим не удается: размерностей мало, нужно еще умножение на Ext'ах, высшие умножения и т.д.
no subject
Date: 2009-10-18 11:26 pm (UTC)А есть ли хотя бы один пример радикально другого сорта, без использования обрезания с помощью белого кружочка?
no subject
Date: 2009-10-18 11:40 pm (UTC)