[personal profile] posic
Что такое алгебраическая геометрия? Ну, это схемы, стэки, инд-схемы, инд-стэки. Все это склеивается разными способами из аффинных схем.

Коммутативному кольцу сопоставляется производная категория модулей. Или ему сопоставляется гомотопическая категория комплексов инъективных модулей. Или комплексов проективных модулей. (Для нетерова кольца с дуализирующим комплексом, разница между последними двумя опциями невелика.) В общем, возникают варианты.

Если схема не аффинная, все это надо как-то клеить. Клеют все это с помощью функторов обратного образа. Их бывает примерно два: звездочка и факториальчик (на самом деле больше). В общем, снова возникают варианты.

Когда решено, что и как клеить, в дело включается машинерия (бесконечность,1)-категорий, квазикатегорий или как там их. Надо взять гомотопический предел диаграммы квазикатегорий. Форма диаграммы отвечает за способ склейки (стэк, там, или инд-схема).

... В рамках этой (новой) картины мира, задачу о контрагерентных копучках нельзя даже поставить. Нет никакого способа придти к понятию очень плоского модуля, очень плоской гипотезе и т.д.

Эти понятия живут в старой картине мира, подчеркивающей абелевы (или хотя бы точные) категории, точные (или хотя бы близкие к точным) функторы и т.д. Нет ли абелевой или точной категории модульных объектов на неаффинной схеме, в которой бесконечные произведения точны (а суммы не точны)? Что мешает ее существованию? Про триангулированные или (бесконечность,1)-категории таких вопросов не задашь, там нет никакой "неточности бесконечных произведений".

В общем, как обычно: новая технология могущественна и привлекательна, а чего нельзя сказать на новом языке, того как бы и не существует. Фронт модной науки ушел вперед, а я остался такой антифутурист и консерватор. Консерватизм мой состоит в приверженности моим же собственным детским и юношеским математическим впечатлениям. Я заполняю технические лакуны устаревшей картины мира.

Чем меньше читателей у моих текстов, тем больше мне хочется писать новые тексты в надежде, что хоть у них найдутся читатели. Читатели жалуются, что текстов слишком много. Читателей мало, а сильных среди них совсем мало, практически нет. Редкие исключения.

... Может быть, мой способ заниматься математикой принес бы больше пользы в мире, более соответствующем моим представлениям о должном. В котором было бы меньше слабых математиков и больше сильных, меньше конформизма и больше самоотверженности, меньше любви к карьере и больше к науке ради науки и т.д. Но единственный способ воплотить любой идеал в социальную реальность состоит в том, чтобы самому жить по его правилам.
(will be screened)
(will be screened if not on Access List)
(will be screened if not on Access List)
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

If you are unable to use this captcha for any reason, please contact us by email at support@dreamwidth.org

July 2025

S M T W T F S
   1 23 45
6789101112
13141516171819
20212223242526
2728293031  

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jul. 6th, 2025 05:12 am
Powered by Dreamwidth Studios