Несуществование алгебры
May. 4th, 2018 03:43 pm- Алгебраистов не бывает.
- Разве? Давайте спросим...
Да-да. Многое зависит от угла зрения, и алгебра тоже. От того, с какого расстояния смотреть, zoom in или zoom out. Людей, которых аналитики, дифурщики, вероятностники, физики и т.д. назвали бы алгебраистами, полным-полно.
Если смотреть с большого расстояния, утверждение, что в кругах Независимого университета, матфака ВШЭ и т.д. в Москве нет или почти нет алгебраистов, кажется абсурдным. Но при более пристальном взгляде, все это распадается на кусочки. Главным образом, есть алгебраические геометры, и есть специалисты по теории представлений. Есть специалисты по алгебраическим аспектам теории гомотопий, алгебраическим аспектам современной матфизики, и т.д. Алгебраистов нет.
Можно вглядеться еще пристальнее, и оно будет выглядеть точно так же. Приезжая в Падую, я обнаруживаю, что тамошние специалисты по tilting theory классифицируют себя на алгебраических геометров и специалистов по теории представлений. Московские алгебраические геометры и специалисты по теории представлений очень удивились бы такой классификации.
... Мой интерес к математике есть интерес к предмету, а не к социуму людей, им занимающихся, или конкретным персонажам, этот социум населяющим (не говоря уже о карьерных возможностях и т.д.) В реальности это происходит так, что я влюбляюсь в математические идеи.
В детстве моим главным источником информации о математике были родители. В возрасте лет 12, в период непосредственно перед поступлением в 57-ю школу, мне казалась настолько непривлекательной та математика, которой они занимались, что я решил, что математика -- вообще неинтересная наука, и я лучше буду программистом.
Позже этот цикл с разными вариациями повторялся с другими людьми, у которых я учился. До какого-то момента мне нравилось то, что они со мной обсуждали; потом переставало. Тогда я переключался на то, что мне нравилось больше, даже если приходилось заниматься этим в одиночестве.
На протяжении длительных периодов времени я не знал, чем я хочу заниматься. Я очень депрессивно размышлял об этом, пытаясь найти себе привлекательную задачу подходящей трудности, но идею присоединиться к чьей-то там уже развернувшейся деятельности никогда всерьез не рассматривал.
И.М. Гельфанд на своем семинаре, на который я ходил школьником, говорил, что начать чем-то заниматься в математике для студента -- это как вскочить в движущийся трамвай. Я не пытался вскочить в движущийся трамвай. Можно сказать, что вместо этого я тоскливо ждал и пытался найти специально предназначенное для меня такси.
Я понимал, конечно, что при прочих равных в компании не только веселее, но и эффективнее, работа идет быстрее. Собственно, я никогда и не избегал быть в математической компании, когда таковая подворачивалась. Но предположение "при прочих равных" не было выполнено. Я хотел заниматься тем, что предназначено для меня; а будет ли компания -- это уж как получится.
... Все познается в сравнении. Сейчас очень хорошо видно, что алгебраистов в том смысле, как я бы понимал это слово, в Москве, действительно, нет. Нет даже по-настоящему алгебраических алгебраических геометров или по-настоящему алгебраических специалистов по теории представлений. Во всяком случае, в достаточной мере, чтобы счесть контра-версию категории О за теорию представлений или контрагерентные копучки за алгебраическую геометрию.
Когда я говорю, что только в Праге и Падуе с окрестностями нашел людей, которым интересна моя математика, мне возражают, что это неправда. Утверждение это может быть и впрямь несколько преувеличенным, но тут надо понимать, о чем идет речь.
Квадратичные алгебры в мире много кому интересны, например, да только я уже давно перестал ими заниматься. Заинтересованных в том, чтобы я продолжил в указанном ими направлении то, чем занимался когда-то раньше (может быть, даже и не так давно), найти легче, но это не совсем то, что нужно. В Праге и Падуе сейчас людям интересно то, о чем мне интересно думать сейчас.
... Вышеизложенное, видимо, во-многом объясняет, почему моя, с позволения сказать, карьера сложилась так, как она сложилась. В мире самоуправляемого научного сообщества, где работу математика оценивают другие математики, нанимая и продвигая тех, с кем им интересно сотрудничать.
В конечном итоге, мне просто повезло правильно ткнуть пальцем в карту Европы в марте 2014 года, купив билет на самолет в Прагу. Но такое везение выпадает тем, кто много над этим работает.
Самое смешное, что с точки зрения многих и многих найденное решение выглядит вполне банальным. Русских эмигрантов в Чехии после 2014 года полным-полно. Кому объяснишь, что на кафедре алгебры в Праге обнаружилась практически не существующая в остальном мире алгебра?
- Разве? Давайте спросим...
Да-да. Многое зависит от угла зрения, и алгебра тоже. От того, с какого расстояния смотреть, zoom in или zoom out. Людей, которых аналитики, дифурщики, вероятностники, физики и т.д. назвали бы алгебраистами, полным-полно.
Если смотреть с большого расстояния, утверждение, что в кругах Независимого университета, матфака ВШЭ и т.д. в Москве нет или почти нет алгебраистов, кажется абсурдным. Но при более пристальном взгляде, все это распадается на кусочки. Главным образом, есть алгебраические геометры, и есть специалисты по теории представлений. Есть специалисты по алгебраическим аспектам теории гомотопий, алгебраическим аспектам современной матфизики, и т.д. Алгебраистов нет.
Можно вглядеться еще пристальнее, и оно будет выглядеть точно так же. Приезжая в Падую, я обнаруживаю, что тамошние специалисты по tilting theory классифицируют себя на алгебраических геометров и специалистов по теории представлений. Московские алгебраические геометры и специалисты по теории представлений очень удивились бы такой классификации.
... Мой интерес к математике есть интерес к предмету, а не к социуму людей, им занимающихся, или конкретным персонажам, этот социум населяющим (не говоря уже о карьерных возможностях и т.д.) В реальности это происходит так, что я влюбляюсь в математические идеи.
В детстве моим главным источником информации о математике были родители. В возрасте лет 12, в период непосредственно перед поступлением в 57-ю школу, мне казалась настолько непривлекательной та математика, которой они занимались, что я решил, что математика -- вообще неинтересная наука, и я лучше буду программистом.
Позже этот цикл с разными вариациями повторялся с другими людьми, у которых я учился. До какого-то момента мне нравилось то, что они со мной обсуждали; потом переставало. Тогда я переключался на то, что мне нравилось больше, даже если приходилось заниматься этим в одиночестве.
На протяжении длительных периодов времени я не знал, чем я хочу заниматься. Я очень депрессивно размышлял об этом, пытаясь найти себе привлекательную задачу подходящей трудности, но идею присоединиться к чьей-то там уже развернувшейся деятельности никогда всерьез не рассматривал.
И.М. Гельфанд на своем семинаре, на который я ходил школьником, говорил, что начать чем-то заниматься в математике для студента -- это как вскочить в движущийся трамвай. Я не пытался вскочить в движущийся трамвай. Можно сказать, что вместо этого я тоскливо ждал и пытался найти специально предназначенное для меня такси.
Я понимал, конечно, что при прочих равных в компании не только веселее, но и эффективнее, работа идет быстрее. Собственно, я никогда и не избегал быть в математической компании, когда таковая подворачивалась. Но предположение "при прочих равных" не было выполнено. Я хотел заниматься тем, что предназначено для меня; а будет ли компания -- это уж как получится.
... Все познается в сравнении. Сейчас очень хорошо видно, что алгебраистов в том смысле, как я бы понимал это слово, в Москве, действительно, нет. Нет даже по-настоящему алгебраических алгебраических геометров или по-настоящему алгебраических специалистов по теории представлений. Во всяком случае, в достаточной мере, чтобы счесть контра-версию категории О за теорию представлений или контрагерентные копучки за алгебраическую геометрию.
Когда я говорю, что только в Праге и Падуе с окрестностями нашел людей, которым интересна моя математика, мне возражают, что это неправда. Утверждение это может быть и впрямь несколько преувеличенным, но тут надо понимать, о чем идет речь.
Квадратичные алгебры в мире много кому интересны, например, да только я уже давно перестал ими заниматься. Заинтересованных в том, чтобы я продолжил в указанном ими направлении то, чем занимался когда-то раньше (может быть, даже и не так давно), найти легче, но это не совсем то, что нужно. В Праге и Падуе сейчас людям интересно то, о чем мне интересно думать сейчас.
... Вышеизложенное, видимо, во-многом объясняет, почему моя, с позволения сказать, карьера сложилась так, как она сложилась. В мире самоуправляемого научного сообщества, где работу математика оценивают другие математики, нанимая и продвигая тех, с кем им интересно сотрудничать.
В конечном итоге, мне просто повезло правильно ткнуть пальцем в карту Европы в марте 2014 года, купив билет на самолет в Прагу. Но такое везение выпадает тем, кто много над этим работает.
Самое смешное, что с точки зрения многих и многих найденное решение выглядит вполне банальным. Русских эмигрантов в Чехии после 2014 года полным-полно. Кому объяснишь, что на кафедре алгебры в Праге обнаружилась практически не существующая в остальном мире алгебра?