Aug. 1st, 2011

1. Младший племянник, и сопровождающие его лица
2. Президент Путин, он же Медведев, и сопровождающие его лица
3. Собаки на улицах, и (не) сопровождающие их лица
4-5. Прочие гопники бытовые и политические, и (не) сопровождающие их лица
1. При любом морфизме (нетеровых схем) можно взять прямой образ квазикогерентной матричной факторизации и получить аналогичную. Использовать инъективные резольвенты.
2. При любом морфизме конечной плоской размерности (нетеровых схем конечной размерности Крулля с достаточным числом векторных расслоений) можно взять прямой образ локально свободной матричной факторизации и получить аналогичную. Использовать комплекс Чеха (это я только что придумал, но, вроде, оно верно).
3. При любом морфизме, собственном в ограничении на локус нулей (регулярного сечения), можно взять прямой образ когерентной матричной факторизации и получить аналогичную. Использовать пункт 1, потом перейти к триангулированным категориям относительных особенностей и использовать теорему о сохранении когерентности производными прямыми образами при собственном морфизме.
4. Можно ли построить прямой образ локально свободной матричной факторизации конечного ранга (так, чтобы получить аналогичную) при собственном морфизме конечной плоской размерности? В случае, когда база регулярна, это следует из пункта 3, но приятно было бы избавиться от этого предположения.

Ранее на ту же тему -- http://posic.livejournal.com/563072.html

Profile

Leonid Positselski

January 2026

S M T W T F S
     12 3
4 567 8910
11121314151617
18192021222324
25262728293031

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jan. 10th, 2026 04:55 pm
Powered by Dreamwidth Studios