Dec. 3rd, 2010

http://asnat.livejournal.com/903854.html

Мой рецепт в моем предыдущем постинге (других рецептов у нас для вас нет).
Новая попытка, после неудачной этой -- http://posic.livejournal.com/502978.html

Рассматривается категория Sm/K гладких многообразий над полем K, снабженная двумя топологиями, этальной и Нисневича. Мы будем рассматривать этальные пучки Z/m-модулей на Sm/K, удовлетворяющие какому-нибудь теоретико-множественному ограничению на мощность (всего сечений меньше, чем какой-то там кардинал). Так, чтобы в этой абелевой категории было достаточно много инъективных объектов.

Пусть F -- такой этальный пучок. Для любого гладкого многообразия X/K, рассмотрим ограничение F на этальный сайт многообразий, этальных над X (строго говоря, это такой прямой образ, но в данном случае он точен). В абелевой категории этальных пучков Z/m-модулей над X, с данным ограничением на мощность, построим комплекс C_F(X), считающий Ext из Z/m в ограничение F. Функтор, сопоставляющий многообразию X комплекс C_F(X), является комплексом предпучков на Sm/K.

Утверждается, что пучковизация Нисневича комплекса предпучков C_F вычисляет производный прямой образ этального пучка F при отображении сайтов Et -> Nis.

Доказательство )

Profile

Leonid Positselski

January 2026

S M T W T F S
     12 3
4 5678910
11121314151617
18192021222324
25262728293031

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jan. 6th, 2026 03:29 pm
Powered by Dreamwidth Studios