[personal profile] posic
о конечной характеристике (подзамок) -- правильно мне кажется, что есть такое понятие -- алгебраическая группа с разделенными степенями в структурном пучке? То есть, где можно взять разделенную степень любой функции, обращающейся в ноль в единице группы? И что нильпотентные алгебры Ли однозначно соответствуют унипотентным алгебраическим группам с разделенными степенями? И изоморфны им как многообразия, посредством экспоненциального отображения? Которое определено, поскольку имеются разделенные степени?

"... тоже плачут!"

Date: 2007-02-19 11:44 pm (UTC)
From: [identity profile] roma.livejournal.com
А "ограниченная структура" на алгебра Ли не должна возникать?
Вадик это должен хорошо знать.

Re: "... тоже плачут!"

Date: 2007-02-20 01:22 pm (UTC)
From: [identity profile] posic.livejournal.com
Нет, мне кажется, ограниченная структура бывает, когда группа без разделенных степеней. В самом деле, что такое ограниченная алгебра Ли? У нее есть ограниченная обертывающая -- конечномерная алгебра Хопфа. Двойственная к ней алгебра Хопфа коммутативна, то есть является алгеброй функций на некоторой группе. Что это за группа? Надо полагать, просто фробениусова окрестность единицы в исходной алгебраической группе. Такой объект действительно есть. Если же разделенные степени присутствуют, то фробениусова окрестность единицы совпадает со всей группой.

Profile

Leonid Positselski

February 2026

S M T W T F S
1 2 34 567
891011121314
15161718192021
22232425262728

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Feb. 6th, 2026 09:34 am
Powered by Dreamwidth Studios