[personal profile] posic
1. Пусть K -- абелева категория Гротендика, и пусть A -- левоперпендикулярная подкатегория в K (в любом смысле слова). Тогда, во всяком случае, А замкнута относительно (прямых слагаемых и) бесконечных прямых сумм в K.

1а. Предположим дополнительно, что A -- абелева категория и функтор вложения A → K точен. Тогда (т.к. A полная подкатегория в K по определению) A замкнута относительно коядер в K. Сравнивая с пунктом 1., заключаем, что A замкнута относительно произвольных копределов в K.

2. Пусть K -- локально представимая абелева категория и A -- точно вложенная, абелева полная подкатегория, замкнутая относительно копределов в K. В этой ситуации, категория A имеет множество образующих тогда и только тогда, когда она корефлективна в K и функтор-корефлектор сохраняет λ-фильтрованные копределы для достаточно большого кардинала λ.

В самом деле, если A имеет множество образующих, то всякий сохраняющий копределы функтор из A в любую категорию имеет правый сопряженный по теореме Фрейда (отметим, что даже без предположения абелевости K, если в K есть произвольные копределы и A замкнута относительно копределов в K, то функтор A → K отражает эпиморфизмы -- достаточно рассмотреть cokernel pair в K эпиморфизма в A -- так что, если факторобъекты любого объекта K образуют множество, ср. [AR, Theorem 1.58], то то же верно и в A). Далее, все объекты категории A представимы, поскольку они представимы в K; и категория A локально представима, поскольку она имеет множество представимых сильных образующих [AR, Theorem 1.20]. Наконец, всякий правый сопряженный функтор между локально представимыми категориями сохраняет λ-фильтрованные копределы для достаточно большого λ [AR, Theorem 1.66].

Обратно, предположим, что K локально λ-представима, A корефлективна в K и корефлектор Γ: K → A сохраняет λ-фильтрованные копределы. Рассмотрим множество G всех объектов в A вида Γ(L), где L -- факторобъект λ-представимого объекта в K (или, что то же самое, L -- λ-порожденный объект в K [AR, Proposition 1.69]). Покажем, что всякий объект X из A является объединением (и даже, более того, копределом) своих подобъектов, принадлежащих G. Действительно, X является λ-фильтрованным копределом λ-представимых объектов Xi в K. Обозначая образ Xi в X через Yi, мы видим, что X является λ-фильтрованным копределом своих подобъектов Yi в K (ср. [AR, Theorem 1.70]). Применяя функтор Γ (который, заметим, как всякий правый сопряженный функтор, переводит мономорфизмы в мономорфизмы), мы обнаруживаем, что X является копределом своих подобъектов Γ(Yi).

3. В предположении принципа Вопенки, эквивалентные условия из пункта 2 всегда выполнены. Более того, всякая полная подкатегория, замкнутая относительно копределов в локально представимой категории, имеет множество образующих (и даже локально представима) и корефлективна (с функтором-корефлектором, сохраняющим λ-фильтрованные копределы для достаточно большого λ) [AR, Theorems 6.14 and 6.28, and Corollary 6.29]. Вообще, всякая полная подкатегория локально представимой категории имеет множество образующих (и даже small dense subcategory) в предположении принципа Вопенки [AR, Theorem 6.6].

4. Таким образом, в предположении принципа Вопенки, всякая точно вложенная левоперпендикулярная абелева подкатегория в категории Гротендика является категорией Гротендика. Было бы интересно знать, можно ли обойтись без принципа Вопенки в доказательстве этого факта для левоперпендикулярных подкатегорий к _множествам_ объектов/морфизмов (ср. [AR, Corollary 6.29], где упоминается co-orthogonality class, но про small co-orthogonality classes ничего не говорится).

5. Какие абелевы категории Гротендика являются (точно вложенными) левоперпендикулярными подкатегориями в категориях модулей над ассоциативными кольцами? Вот центральный вопрос.

Date: 2017-11-13 09:49 pm (UTC)
From: [identity profile] buddha239.livejournal.com
Для таких категорий как раз и существует консервативный точный функтор в абелевы группы, сохраняющий копроизведения?:)

Date: 2017-11-13 10:01 pm (UTC)
From: [identity profile] posic.livejournal.com
Для таких категорий, как в моем пункте 5., такой функтор существует, конечно. Но на вид, то, что у меня обсуждается -- это более сильное условие. Всякий ли консервативный точный функтор в абелевы группы можно превратить во вполне строгий функтор в модули над чем-то?

Пусть A -- абелева категория Гротендика, и пусть F: A → Ab -- консервативный точный функтор, сохраняющий копроизведения. Пусть R -- кольцо эндоморфизмов функтора F (совокупность всех эндоморфизмов F образует множество, поскольку такой эндоморфизм определяется своим действием на группах F(G) для образующих объектов G категории А).

Тогда имеется индуцированный функтор F': A → R-mod. Можно ли показать, что этот функтор вполне строгий?

В частности, пусть A -- категория пучков абелевых групп на топологическом пространстве X, и пусть F -- функтор, сопоставляющий пучку прямую сумму его слоев во всех точках. Чему равно кольцо R, есть ли там вообще какие-нибудь элементы, кроме бесконечных линейных комбинаций проекторов на прямые слагаемые (слои в точках)?

Элементу слоя пучка в одной точке пространства элемент его слоя в другой точке не сопоставишь (когда пространство отделимо)...
Edited Date: 2017-11-13 10:16 pm (UTC)

Date: 2017-11-13 10:11 pm (UTC)

Profile

Leonid Positselski

January 2026

S M T W T F S
     12 3
4 567 89 10
11 12 1314 151617
1819 2021 22 2324
25 26 27 28 293031

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jan. 29th, 2026 03:30 pm
Powered by Dreamwidth Studios