[personal profile] posic
Следующие результаты можно при случае включить в мой последний архивный препринт, 1705.04960.

Пусть R -- коммутативное кольцо, I ⊂ R -- конечно-порожденный идеал, R^ = limn R/In -- I-адическое пополнение кольца R, рассматриваемое как топологическое кольцо в топологии проективного предела (= I-адической топологии R-модуля R^). Пусть Λ = ΛI обозначает функтор I-адического пополнения M &rar; limn M/InM на категории R-модулей, Δ = ΔI -- функтор, сопряженный слева к вложению полной подкатегории I-контрамодульных R-модулей в R-mod.

Тогда:

1. Нулевой левый производный функтор L0Λ не точного ни слева, ни справа функтора Λ -- он же точный справа функтор R-mod → R-mod, совпадающий с функтором Λ на полной подкатегории проективных модулей в R-mod -- является сопряженным слева функтором к вполне строгому забывающему функтору R^-contra → R-mod.

2. Полная подкатегория I-контрамодульных R-модулей R-modI-ctra ⊂ R-mod есть в точности минимальная полная подкатегория в R-mod, содержащая образ вполне строгого забывающего функтора R^-contra → R-mod и замкнутая относительно расширений. В самом деле, всякий I-контрамодульный R-модуль является расширением двух R^-контрамодулей, как следует из вычисления ядра сюръективного морфизма Δ(M) → Λ(M) в разделе 7 препринта 1605.03934.

2а. Таким образом, свободный R^-контрамодуль с одной образующей R^ является 1-хорошей проективной образующей локально представимой абелевой категории R^-contra тогда и только тогда, когда вполне строгий функтор R^-contra → R^-modR^I-ctra является эквивалентностью категорий. В частности, если взять за кольцо R с идеалом I контрпример из раздела 2 работы 1503.05523, то R^-контрамодуль R^ будет 0-хорошей, но не 1-хорошей проективной образующей категории R^-contra.

June 2025

S M T W T F S
1 2 3 4 56 7
8 9 10 11121314
15161718192021
22232425262728
2930     

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jun. 13th, 2025 02:58 am
Powered by Dreamwidth Studios