[personal profile] posic
Алгебраически делимая (абелева) группа -- это группа, в которой для каждого элемента g и для каждого натурального числа n выбран один из результатов деления g на n, т.е. указан фиксированный элемент hn(g), такой что nhn(g) = g. Никаких других уравнений на отображения g → hn(g) не накладывается, никаких условий согласования.

Алгебраически делимые абелевы группы образуют категорию, морфизмами в которой являются все гомоморфизмы групп, коммутирующие с отображениями hn. Это некоторая категория множеств с операциями, на которые наложены уравнения ("алгебр с сигнатурой и тождествами") -- отсюда термин "алгебраически". Категория эта неаддитивна (поскольку отображения hn не обязаны быть аддитивными), но это категория алгебр над некоторой (неаддитивной) монадой на категории абелевых групп.

Аналогично, алгебраически инъективный левый модуль над кольцом R -- это такой модуль M, что для любого левого идеала I ⊂ R и гомоморфизма левых R-модулей I → M выбрано фиксированное продолжение этого гомоморфизма на R. Функториальное вложение произвольного R-модуля в инъективный можно построить, свободно породив этим модулем алгебраически инъективный R-модуль (функтор этот есть функтор свободной алгебры над некоторой неаддивной монадой на категории R-модулей, не коммутирующей даже с направленными прямыми пределами, если кольцо не нетерово; вообще, как мы знаем, построить функториальную инъективную резольвенту модуля можно и самыми элементарными средствами, но аддитивным такой функтор не будет, если кольцо не является алгеброй над полем).

Аналогично можно говорить об "алгебраических слабых системах факторизации", algebraic weak factorization systems (слабая система факторизации = "половина модельной структуры", в которой есть, допустим, только расслоения и ацикличные корасслоения). Задание множества образующих левого класса морфизмов порождает, в рамках "алгебраической" версии рассуждения о малом объекте (small object argument), соответствующую категорию "алгебраического правого класса морфизмов", у которых для каждого коммутативного квадрата с образующей левого класса зафиксировано поднятие. Эта категория монадична над категорией морфизмов в исходной объемлющей категории.

Profile

Leonid Positselski

January 2026

S M T W T F S
     12 3
4 567 89 10
11 12 1314 151617
1819 2021 22 2324
25 262728293031

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jan. 27th, 2026 03:47 am
Powered by Dreamwidth Studios