[personal profile] posic
http://posic.livejournal.com/1227491.html

К предыдущему математическому постингу, к первому пункту его: вспомогательный производный функтор это, конечно, хорошо, но все-таки и без леммы Накаямы никак не обойтись. Подходящей формы ее, между тем, в моих текстах не было до сих пор пока; тут нужно некое обобщение.

Что такое, вообще, лемма Накаямы? В классической теории модулей есть, на самом деле, две ее версии, ни одна из которых не является частным случаем другой: 1. для радикала Джекобсона и конечно-порожденного модуля, и 2. для (конечно) нильпотентного идеала и произвольного модуля. Второй случай настолько прост, что обычно не удостаивается отдельного упоминания; но контрамодульная лемма Накаямы является именно его обобщением.

Пусть R -- ассоциативное кольцо, I -- его (скажем, двусторонний) идеал, такой что In = 0 для некоторого натурального n, и пусть M -- левый R-модуль. Тогда если IM = M, то M = 0. Очевидное доказательство я опущу, но отмечу, что утверждение это допускает не менее очевидное обобщение, которое реже можно увидеть где-либо сформулированным.

Пусть R -- ассоциативное кольцо и I1, …, In -- его (скажем, двусторонние) идеалы, произведение которых I1 … In есть нулевой идеал. Пусть M -- левый R-модуль. Тогда если IiM = M для всех i = 1,…,n, то M = 0.

Контрамодульный вариант этого последнего утверждения -- это то, что нам нужно.

Пусть R -- полное отделимое топологическое кольцо, в котором открытые правые идеалы образуют базу окрестностей нуля, и пусть J1, J2, … -- последовательность (скажем, правых и, для простоты, замкнутых) идеалов в R, такая что последовательность правых идеалов J1, J1J2, J1J2J3, … сходится к нулю в топологии R (т.е., для любая окрестность нуля в R содержит все, кроме конечного числа, идеалы в этой последовательности произведений). Пусть P -- левый R-контрамодуль. Тогда если отображения Jn[[P]] → P сюръективны для всех n, то P = 0.

Доказательство на этот раз уже отнюдь не тривиально, но писать его здесь я все-таки не буду; оно такое же, как доказательство более привычной формы контрамодульной леммы Накаямы в разделе 1.3 слабо искривленного препринта.

Вместо этого, поступим в духе ЖЖ и дадим ссылку на радостный постинг июня 2006 года, возвестивший миру об открытии первой сформулированной в разумной общности версии леммы Накаямы для контрамодулей (тогда еще только над коалгебрами над полями) -- http://posic.livejournal.com/191812.html

А вот, кстати, постинг сентября 2003 года (12 лет назад!) о контрамодулях над целыми p-адическими числами, содержащий, помимо разных прочих утверждений, и сжатую формулировку леммы Накаямы для них -- http://posic.livejournal.com/107398.html

Profile

Leonid Positselski

December 2025

S M T W T F S
 1 2 3 4 5 6
7 8 9 10 11 1213
1415 16 1718 19 20
21 22 23 2425 26 27
28 29 3031   

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Dec. 30th, 2025 06:56 pm
Powered by Dreamwidth Studios