![[personal profile]](https://www.dreamwidth.org/img/silk/identity/user.png)
Видимо, общая формулировка должна быть примерно такой. Пусть R0 ← R1 ← R2 ← … -- проективная система ассоциативных колец и сюръективных отображений между ними, и пусть Fn -- деконструируемый класс левых Rn-модулей, замкнутый относительно прямых слагаемых, состоящий из (не всех, но только) плоских Rn-модулей, заданный для всех n и переводимый внутрь класса Fn−1 функтором редукции Rn−1⊗Rn−. Предположим, кроме того, что класс Fn содержит все проективные Rn-модули и замкнут относительно операций перехода к ядру сюръективного морфизма Rn-модулей.
Тогда класс F всех плоских левых контрамодулей над топологическим кольцом R = lim Rn, редукции которых до Rn-модулей принадлежат Fn, является левой стороной полной наследственной теории кокручения на абелевой категории левых R-контрамодулей.
Доказательство основывается на следующих сообращениях:
1. Будем называть Rn-модулями Fn-кручения левые Rn-модули, Ext1-перпендикулярные к модулям из класса Fn (заметим, что всякий Rn-модуль Fn-кокручения является одновременно Rn+1-модулем Fn+1-кокручения; обратное не утверждается). Проверяется, что все Rn-модули Fn-кокручения, рассматриваемые как левые R-контрамодули, Ext1-перпендикулярны справа к классу F.
2. Всякий левый R-контрамодуль, перпендикулярный слева ко всем инъективным левым Rn-модулям, рассматриваемым как левые R-контрамодули, для всех n, -- является проективным пределом своих редукций до Rn-модулей. Левый R-контрамодуль перпендикулярен слева ко всем Rn-модулям Fn-кокручения тогда и только тогда, когда он принадлежит к классу F.
3. Функторы редукции R-контрамодулей до Rn-модулей, будучи левыми сопряженными функторами, коммутируют с индуктивными пределами. Индуктивный предел цепочки плоских R-контрамодулей, занумерованных вполне упорядоченным множеством индексов, с плоскими факторконтрамодулями каждого контрамодуля в цепочке по индуктивному пределу предыдущих, является плоским R-контрамодулем. Индуктивные пределы начальных отрезков такой цепочки являются подконтрамодулями индуктивного предела всей цепочки с плоским факторконтрамодулем, изоморфным индуктивному пределу факторконтрамодулей контрамодулей из остатка (конечного отрезка) цепочки по индуктивному пределу начального отрезка. В этом смысле можно говорить о трансфинитно-итерированных расширениях плоских R-контрамодулей.
4. Класс левых R-контрамодулей F "деконструируем": он состоит в точности из трансфинитно-итерированных расширений контрамодулей этого класса с мощностью, ограниченной достаточно большим кардиналом.
5. Всякий левый R-контрамодуль, являющийся проективным пределом своих редукций до Rn-модулей, можно вложить в левый R-контрамодуль, перпендикулярный справа ко всем R-контрамодулям из класса F (очевидное следствие пункта 1). Согласно пункту 4 и основной теореме из предыдущего постинга, отсюда можно заключить, что такой R-контрамодуль можно вложить в R-контрамодуль, перпендикулярный справа к классу F, с коядром из класса F.
6. Свободные левые R-контрамодули принадлежат к классу F. Подконтрамодули свободных R-контрамодулей являются проективными пределами своих редукций до Rn-контрамодулей. Согласно лемме Салче (или ее доказательству), отсюда следует, что всякий левый R-контрамодуль можно представить как факторконтрамодуль контрамодуля из класса F по подконтрамодулю из перпендикулярного справа класса.
7. Класс левых R-контрамодулей F (содержит свободные контрамодули и) замкнут относительно операции перехода к ядру сюръективного морфизма. Поэтому ортогональный к нему справа класс замкнут относительно операции перехода к коядру вложения. Согласно пункту 6, всякий левый R-контрамодуль можно представить как факторконтрамодуль контрамодуля из класса F по подконтрамодулю из перпендикулярного класса; согласно пункту 5, всякий контрамодуль из класса F можно вложить в контрамодуль из перпендикулярного класса так, чтобы факторконтрамодуль принадлежал к классу F. Согласно "лемме Салче для бедных" 9.1.2 из полубесконечной книжки, отсюда следует, что всякий левый R-контрамодуль можно вложить в R-контрамодуль, перпендикулярный справа к классу F, с коядром из класса F.
P.S. Все условия плоскости в этих рассуждениях можно заменить на условия "плоскости применительно к проективной системе колец": вместо "плоских левых Rn-модулей", можно говорить о левых Rn-модулях, у которых зануляются все высшие группы Tor с кольцом/модулем Rn−1 над Rn. Последнее условие, однако, похоже, зависит от способа представления топологического кольца R в виде проективной системы его дискретных факторколец Rn.
Тогда класс F всех плоских левых контрамодулей над топологическим кольцом R = lim Rn, редукции которых до Rn-модулей принадлежат Fn, является левой стороной полной наследственной теории кокручения на абелевой категории левых R-контрамодулей.
Доказательство основывается на следующих сообращениях:
1. Будем называть Rn-модулями Fn-кручения левые Rn-модули, Ext1-перпендикулярные к модулям из класса Fn (заметим, что всякий Rn-модуль Fn-кокручения является одновременно Rn+1-модулем Fn+1-кокручения; обратное не утверждается). Проверяется, что все Rn-модули Fn-кокручения, рассматриваемые как левые R-контрамодули, Ext1-перпендикулярны справа к классу F.
2. Всякий левый R-контрамодуль, перпендикулярный слева ко всем инъективным левым Rn-модулям, рассматриваемым как левые R-контрамодули, для всех n, -- является проективным пределом своих редукций до Rn-модулей. Левый R-контрамодуль перпендикулярен слева ко всем Rn-модулям Fn-кокручения тогда и только тогда, когда он принадлежит к классу F.
3. Функторы редукции R-контрамодулей до Rn-модулей, будучи левыми сопряженными функторами, коммутируют с индуктивными пределами. Индуктивный предел цепочки плоских R-контрамодулей, занумерованных вполне упорядоченным множеством индексов, с плоскими факторконтрамодулями каждого контрамодуля в цепочке по индуктивному пределу предыдущих, является плоским R-контрамодулем. Индуктивные пределы начальных отрезков такой цепочки являются подконтрамодулями индуктивного предела всей цепочки с плоским факторконтрамодулем, изоморфным индуктивному пределу факторконтрамодулей контрамодулей из остатка (конечного отрезка) цепочки по индуктивному пределу начального отрезка. В этом смысле можно говорить о трансфинитно-итерированных расширениях плоских R-контрамодулей.
4. Класс левых R-контрамодулей F "деконструируем": он состоит в точности из трансфинитно-итерированных расширений контрамодулей этого класса с мощностью, ограниченной достаточно большим кардиналом.
5. Всякий левый R-контрамодуль, являющийся проективным пределом своих редукций до Rn-модулей, можно вложить в левый R-контрамодуль, перпендикулярный справа ко всем R-контрамодулям из класса F (очевидное следствие пункта 1). Согласно пункту 4 и основной теореме из предыдущего постинга, отсюда можно заключить, что такой R-контрамодуль можно вложить в R-контрамодуль, перпендикулярный справа к классу F, с коядром из класса F.
6. Свободные левые R-контрамодули принадлежат к классу F. Подконтрамодули свободных R-контрамодулей являются проективными пределами своих редукций до Rn-контрамодулей. Согласно лемме Салче (или ее доказательству), отсюда следует, что всякий левый R-контрамодуль можно представить как факторконтрамодуль контрамодуля из класса F по подконтрамодулю из перпендикулярного справа класса.
7. Класс левых R-контрамодулей F (содержит свободные контрамодули и) замкнут относительно операции перехода к ядру сюръективного морфизма. Поэтому ортогональный к нему справа класс замкнут относительно операции перехода к коядру вложения. Согласно пункту 6, всякий левый R-контрамодуль можно представить как факторконтрамодуль контрамодуля из класса F по подконтрамодулю из перпендикулярного класса; согласно пункту 5, всякий контрамодуль из класса F можно вложить в контрамодуль из перпендикулярного класса так, чтобы факторконтрамодуль принадлежал к классу F. Согласно "лемме Салче для бедных" 9.1.2 из полубесконечной книжки, отсюда следует, что всякий левый R-контрамодуль можно вложить в R-контрамодуль, перпендикулярный справа к классу F, с коядром из класса F.
P.S. Все условия плоскости в этих рассуждениях можно заменить на условия "плоскости применительно к проективной системе колец": вместо "плоских левых Rn-модулей", можно говорить о левых Rn-модулях, у которых зануляются все высшие группы Tor с кольцом/модулем Rn−1 над Rn. Последнее условие, однако, похоже, зависит от способа представления топологического кольца R в виде проективной системы его дискретных факторколец Rn.
no subject
Date: 2015-10-15 04:05 am (UTC)Let A be a minimal left ideal of C: then we have A=Ce, where e is an idempotent.
Здесь C - некоторая достаточно хорошая алгебра Клиффорда, меня интересует в основном алгебра комплексного пространства-времени Минковского, она изоморфна алгебре комплексных матриц 4х4. Почему минимальный левый идеал порождается идемпотентом? Шевалле в этом месте ни на что не ссылается, это какая-то известная теорема?
no subject
Date: 2015-10-15 09:11 am (UTC)1. у бесконечномерных алгебр нет вообще никаких причин существовать минимальным (ненулевым) левым идеалам -- достаточно рассмотреть кольцо многочленов k[x] от одной переменной над полем, например
2. у конечномерных алгебр с нильпотентными идеалами есть минимальные левые нильпотентные идеалы, в которых не может быть идемпотентов -- достаточно рассмотреть k[x]/(xn), например
3. если C -- конечномерная алгебра без нильпотентных идеалов, то во всяком ее (ненулевом) левом идеале найдется элемент, квадрат которого не равен нулю (потому что если J = CJ -- левый идеал и J2 = 0, то (JC)2 = JCJC = JJC = 0 и двусторонний идеал JC, порожденный J, состоит из нильпотентных элементов).
Пусть A -- минимальный левый идеал в C, и пусть a -- элемент в A, такой что а2 ≠ 0. Тогда Ca2 -- левый идеал в C, содержащийся в A, так что Ca2 = A. Поэтому существует какой-нибудь элемент b в C, такой что ba2 = a. Обозначим ba = e; теперь ea = a. Отсюда e2a = a и (e2−e)a = 0.
Если e2 − e ≠ 0, рассмотрим левый идеал I, порожденный элементом e2 − e. Он содержится в A, поскольку e = ba ∈ A. Таким образом, имеем A = I. С другой стороны, Ia = 0, так как (e2−e)a = 0. Получаем Aa =0, что противоречит исходному предположению, что а2 ≠ 0.
Итак, элемент e идемпотентен. Он не равен нулю (поскольку ea = a) и принадлежит идеалу A (поскольку e = ba). Следовательно, А = Ce.
P.S. Другое дело, что мне сдается, что в конечномерной алгебре без нильпотентных идеалов всякий левый или правый идеал порожден идемпотентом, не только минимальный. Это, может быть, уже не так легко доказать такими элементарными средствами, но можно рассмотреть, действительно, случай алгебры матриц -- линейных операторов, действующих в каком-то конечномерном векторном пространстве V. Классифицировать (перечислить) все левые и правые идеалы в такой алгебре -- хорошее упражнение, над которым приятно подумать, рекомендую.
Классифицировать все идемпотентные элементы в алгебре операторов на V, кстати, тоже хорошее упраженение. Если решить их, будет ясно, почему все идеалы порождены идемпотентами.
no subject
Date: 2015-10-15 06:14 pm (UTC)no subject
Date: 2015-10-15 06:22 pm (UTC)