[personal profile] posic
Chapter II, Theorem 7.18 on page 133: "Let X be a locally noetherian prescheme. Then every quasi-coherent OX-module F can be embedded into a quasi-coherent, injective OX-module I." Proof: "Indeed, we will show that the injective hull I of a quasi-coherent sheaf F is quasi-coherent. <...>"

Example on page 135: "If X is a locally Noetherian prescheme, the category Qco(X) of quasi-coherent sheaves on X may not be locally noetherian. Thus we do not know the structure of injectives in that category, and we do not know whether every injective object in Qco(X) is injective in Mod(X)."

Курсив мой. Типа, вложите этот ваш инъективный квазикогерентный пучок в инъективный OX-модуль, являющийся квазикогерентным пучком (согласно теореме), и он там будет прямым слагаемым. И класс инъективных OX-модулей замкнут относительно прямых слагаемых.

Мораль: не только я один берусь, не умея.
(will be screened)
(will be screened if not on Access List)
(will be screened if not on Access List)
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

If you are unable to use this captcha for any reason, please contact us by email at support@dreamwidth.org

Profile

Leonid Positselski

January 2026

S M T W T F S
     12 3
4 567 8910
11121314151617
18192021222324
25262728293031

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jan. 10th, 2026 05:27 am
Powered by Dreamwidth Studios