Пусть H -- категория, S -- локализующий класс морфизмов в H (удовлетворяющий условиям Оре), K -- другая категория, F: H → K -- функтор. Мы хотим построить, скажем, левый производный функтор LF функтора F относительно локализующего класса S, который бы действовал из H[S−1] в K. Следуя Делиню, будем говорить, что LF определен на объекте X категории H[S−1], если существует морфизм Y → X в H, принадлежащий S, такой что для любого морфизма Z → Y в H, принадлежащего S, найдется морфизм W → Z в H, принадлежащий S, такой что морфизм F(W→Y) является изоморфизмом в K. В этом случае, положим LF(X) = F(Y).
Другими словами: из условий Оре следует, что категория всех морфизмов в объект X в категории H, принадлежащих S, является направленной. Объектом LF(X) называется проективный предел F(Y) по всем морфизмам Y→X, принадлежащим S, если этот предел стабилизируется на конфинальной подкатегории (в противном случае, LF(X) существует как про-объект, но не как настоящий объект в K).
Теперь предположим, что у нас имеются категории H' и H'' с локализующими классами S' и S'', и пара сопряженных функторов F: H'→H'' и G: H''→H' (F сопряжен слева, а G справа). Нас интересуют производные функторы композиций F и G с функторами локализации H'' → H''[S''−1] и H' → H'[S'−1]; в порядке вольности речи, будем называть их просто производными функторами F и G и обозначать LF и RG. Так вот, частично определенные функторы LF и RG между категориями H'[S'−1] и H''[S''−1] сопряжены на тех объектах, на которых они определены, т.е. имеются естественные биекции
MorH''[S''−1](LF(X),Y) = MorH'[S'−1](X,RG(Y))
для всех X из H'[S'−1] и Y из H''[S''−1], таких что LF(X) и RG(Y) определены (как объекты H''[S''−1] и H'[S'−1]). В самом деле, оба множества суть индуктивные пределы множеств HomH''(FZ,W) = HomH'(Z,GW) по всем морфизмам Z→X, принадлежащим S', и Y→W, принадлежащим S''.
Другими словами: из условий Оре следует, что категория всех морфизмов в объект X в категории H, принадлежащих S, является направленной. Объектом LF(X) называется проективный предел F(Y) по всем морфизмам Y→X, принадлежащим S, если этот предел стабилизируется на конфинальной подкатегории (в противном случае, LF(X) существует как про-объект, но не как настоящий объект в K).
Теперь предположим, что у нас имеются категории H' и H'' с локализующими классами S' и S'', и пара сопряженных функторов F: H'→H'' и G: H''→H' (F сопряжен слева, а G справа). Нас интересуют производные функторы композиций F и G с функторами локализации H'' → H''[S''−1] и H' → H'[S'−1]; в порядке вольности речи, будем называть их просто производными функторами F и G и обозначать LF и RG. Так вот, частично определенные функторы LF и RG между категориями H'[S'−1] и H''[S''−1] сопряжены на тех объектах, на которых они определены, т.е. имеются естественные биекции
MorH''[S''−1](LF(X),Y) = MorH'[S'−1](X,RG(Y))
для всех X из H'[S'−1] и Y из H''[S''−1], таких что LF(X) и RG(Y) определены (как объекты H''[S''−1] и H'[S'−1]). В самом деле, оба множества суть индуктивные пределы множеств HomH''(FZ,W) = HomH'(Z,GW) по всем морфизмам Z→X, принадлежащим S', и Y→W, принадлежащим S''.
no subject
Date: 2011-07-29 09:28 am (UTC)no subject
Date: 2011-07-29 04:39 pm (UTC)no subject
Date: 2011-07-29 09:21 pm (UTC)Так всегда делается в теории Квиллена модельных категорий, где в совершенно не абелевом не аддитивном не линейном контексте встает вопрос когда у функтора из одной модельной категории в другую можно взять производный, который есть функтор из соотв гомотопических (= нелинейных производных) категорий. Условие на функтор называется "пара функторов Квиллена" или как-то так, и состоит из двух частей.
Часть первая говорит в нелинейном контексте про точность справа/слева, говорит это наличием соотв сопряженных.
Часть вторая говорит "функтор точный справа переводит квазиизом между проективными объектами в квазиизом" и аналогично для сопряженного функтора.
В результате получается пара сопряженных функторов между гомотопическими категориями.