[personal profile] posic
Юзер misha2 убедил меня в комментариях к предыдущему постингу, что поставленная в нем задача вряд ли разрешима, но я не хочу сдаваться и сделаю следующую попытку.

Как известно, все алгебраически замкнутые поля фиксированной характеристики элементарно эквивалентны, т.е. если какая-то формула в языке теории колец истинна в одном из них, то она истинна и в остальных. Если какая-то формула истинна в алгебраически замкнутых полях всех простых характеристик, то она истинна и в алгебраически замкнутых полях характеристики нуль.

Нельзя ли распространить эти результаты на кольца, не имеющие целых алгебраических расширений? Допустим, некоторая формула в языке теории колец истинна во всех коммутативных алгебрах над полями, содержащих корни всех многочленов от одной переменной со старшим коэффициентом 1 (для моих целей, я готов предположить, что она истинна во всех вообще коммутативных алгебрах над полями). Следует ли из этого, что она истинна в кольце всех целых алгебраических чисел?

P.S. http://www.math.uga.edu/~rr/ArithAllAlgInt.pdf

P.P.S. В частности, по ссылке выше автор отмечает, что (2x-1)(3x-1) = 0 разрешимо в любом поле, но не в кольце целых алгебраических чисел. Так что ответ на мой вопрос отрицательный. Но по ссылке есть и некоторый положительный результат.
(will be screened)
(will be screened if not on Access List)
(will be screened if not on Access List)
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

If you are unable to use this captcha for any reason, please contact us by email at support@dreamwidth.org

July 2025

S M T W T F S
   1 23 45
67 8 9 10 11 12
131415 16 17 18 19
2021 22 23 24 25 26
27 28 29 3031  

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jul. 30th, 2025 07:35 am
Powered by Dreamwidth Studios