[personal profile] posic
1. Мотив любой подсхемы аффинной прямой является тейтовским мотивом. Нельзя ли построить производные прямые образы при морфизме X × A1 → X для моих мотивных пучков Артина-Тейта с конечными коэффициентами?

Вопрос загадочный, поскольку при итерировании получается X × A2, а мотив произвольной подсхемы аффинной плоскости уже вовсе не обязательно тейтовский. (Вообще, как соотносятся артин-тейтовские мотивные пучки и мотивные пучки с тейтовскими слоями, в случае конечных коэффициентов?) [Upd: ну, видимо просто производные прямые образы при морфизме X × A1 → X будут AT-мотивными пучками на X только для тейтовских (в смысле, артин-тейтовских с тейтовскими слоями) мотивных пучков на X × A1.]

2. Допустим, мы пытаемся доказывать МБК-гипотезу путем доказательства кошулевости больших градуированных алгебр, отвечающих за мотивы Артина-Тейта над полями, как предлагается здесь. А кошулевость алгебры A или A', связанной с полем K, пытаемся доказывать возрастающей индукцией по K.

a) Может быть, проблему перехода от поля K к его алгебраическому расширению при такой индукции можно разрешить руками?

б) Может быть, проблему перехода от поля K к его чисто трансцендентному расширению при такой индукции можно разрешить, пользуясь пунктом 1?
(will be screened)
(will be screened if not on Access List)
(will be screened if not on Access List)
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

If you are unable to use this captcha for any reason, please contact us by email at support@dreamwidth.org

July 2025

S M T W T F S
   1 23 45
6789101112
13141516171819
20212223242526
2728293031  

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jul. 6th, 2025 03:46 pm
Powered by Dreamwidth Studios