Как я дошел до жизни такой - 2
Feb. 20th, 2023 12:35 am![[personal profile]](https://www.dreamwidth.org/img/silk/identity/user.png)
Прошли три года, и с апреля 2012 по февраль 2014 года основным объектом моего интереса стали контрагерентные копучки. Это двойственно-аналогичное понятие к квазикогерентным пучкам, которое на протяжении всего периода с весны 2009 по весну 2012 я пытался придумать, и в итоге придумал.
Обнаружилось при этом, что главное явление природы, ответственное за хорошие гомологические свойства категории квазикогерентных пучков, состоит в том, что кольцо функций на аффинной открытой подсхеме аффинной схемы является плоским модулем над кольцом функций на объемлющей аффинной схеме. А главной проблемой, ответственной за более сложное (по сравнению с квазикогерентными пучками) поведение контрагерентных копучков, оказалось то, что модуль этот -- плоский, да, но не проективный.
Сразу же, весной 2012, наметились как бы два рукава, два потока теории контрагерентных копучков. Один состоял в том, чтобы попытаться ограничить масштабы проблемы -- убедиться в том факте, что плоские модули, возникающие в контексте предыдущего абзаца, являются относительно несложно устроенными, в гомологическом смысле, плоскими модулями. Намного проще произвольных плоских модулей над коммутативными кольцами. Следить за этим фактом и пользоваться им.
Второй подход состоял в том, чтобы смириться с необходимостью, в конечном итоге, иметь дело с произвольными плоскими модулями вместо проективных. Первый подход стал называться "локально контраприспособленные контрагерентные копучки", а второй -- "контрагерентные копучки локально кокручения".
***
Вершиной первого подхода стала очень плоская гипотеза, сформулированная в начале 2014 года в Москве и доказанная летом 2017 в Праге и Хайфе. Вершиной второго подхода по состоянию на сегодняшний день представляются теоремы периодичности в гомологической алгебре.
Обнаружилось при этом, что главное явление природы, ответственное за хорошие гомологические свойства категории квазикогерентных пучков, состоит в том, что кольцо функций на аффинной открытой подсхеме аффинной схемы является плоским модулем над кольцом функций на объемлющей аффинной схеме. А главной проблемой, ответственной за более сложное (по сравнению с квазикогерентными пучками) поведение контрагерентных копучков, оказалось то, что модуль этот -- плоский, да, но не проективный.
Сразу же, весной 2012, наметились как бы два рукава, два потока теории контрагерентных копучков. Один состоял в том, чтобы попытаться ограничить масштабы проблемы -- убедиться в том факте, что плоские модули, возникающие в контексте предыдущего абзаца, являются относительно несложно устроенными, в гомологическом смысле, плоскими модулями. Намного проще произвольных плоских модулей над коммутативными кольцами. Следить за этим фактом и пользоваться им.
Второй подход состоял в том, чтобы смириться с необходимостью, в конечном итоге, иметь дело с произвольными плоскими модулями вместо проективных. Первый подход стал называться "локально контраприспособленные контрагерентные копучки", а второй -- "контрагерентные копучки локально кокручения".
***
Вершиной первого подхода стала очень плоская гипотеза, сформулированная в начале 2014 года в Москве и доказанная летом 2017 в Праге и Хайфе. Вершиной второго подхода по состоянию на сегодняшний день представляются теоремы периодичности в гомологической алгебре.