Неплоская кошулевость модулей
Dec. 24th, 2010 06:28 pmВ развитие http://posic.livejournal.com/425027.html
Гипотеза. Существует понятие кошулевости для неотрицательно градуированных модулей над неотрицательно градуированными кошулевыми кольцами (без каких-либо условий плоскости), со следующими свойствами.
0. Модуль M, у которого все компоненты, кроме M0, равны нулю, кошулев над любым кошулевым кольцом. Свободный модуль с образующими в градуировке 0 кошулев над любым кошулевым кольцом.
1. Замена нулевой компоненты кошулева кольца не влияет на кошулевость модулей над ним.
2. Левый модуль M над A0-плоским справа кошулевым кольцом A кошулев тогда и только тогда, когда TorAij(A0,M) = 0 при i≠j. A0-плоский левый модуль М над A0-плоским слева кошулевым кольцом A кошулев тогда и только тогда, когда TorAij(A0,M) = 0 при i≠j.
3. Если A → B -- морфизм неотрицательно градуированных колец, кольцо A кошулево, и B≥1 -- кошулев левый A-модуль (в градуировке, сдвинутой на 1), то и кольцо B кошулево.
4. Левый A-модуль M кошулев тогда и только тогда, когда тривиальное расширение A &oplus M (где градуировка на M сдвинута на 1, два из четырех умножений тривиальны, а два других суть умножение на A и левое действие A на M) является кошулевой алгеброй. Заметим, что в этой конструкции непонятно, как определять "тривиальное" умножение M × A0 → M, но да это нам и неважно, поскольку A0 всегда можно заменить на Z.
5. Обычные общегомологические свойства: поведение в точных последовательностях/фильтрациях, при замене кошулева кольца и проч. (?)
26.12.10 - Update. Видимо, технически правильное определение такое. Градуированный A-модуль M кошулев, если кошулевым является большое градуированное кольцо B с двумя объектами α и μ, определяемое правилами Bαα = A, Bαμ = M со сдвигом на 1 (так чтобы Bαμ жило в градуировках начиная с 1), Bμα = 0, и Bμμ = Z. Если A изначально было большим градуированным кольцом, то B строится как большое градуированное кольцо, множество индексов которого состоит из множества индексов кольца A и одного дополнительного элемента μ.
27.12.10 - UUpdate. А еще более правильное техническое определение такое. Кошулевость градуированного A-модуля M определяется через существование точной категории G', порожденной своими подкатегориями E', E_0, E_1, ..., и функтора сдвига на точной подкатегории G ⊂ G', порожденной одними только E_i. Точная категория E' (с тривиальной точной структурой) состоит при этом из конечных прямых сумм одного-единственного фиксированного объекта, а кольцо эндоморфизмов этого объекта может быть каким угодно, причем замена этого кольца ничего не меняет (так что можно считать его всегда равным Z).
Гипотеза. Существует понятие кошулевости для неотрицательно градуированных модулей над неотрицательно градуированными кошулевыми кольцами (без каких-либо условий плоскости), со следующими свойствами.
0. Модуль M, у которого все компоненты, кроме M0, равны нулю, кошулев над любым кошулевым кольцом. Свободный модуль с образующими в градуировке 0 кошулев над любым кошулевым кольцом.
1. Замена нулевой компоненты кошулева кольца не влияет на кошулевость модулей над ним.
2. Левый модуль M над A0-плоским справа кошулевым кольцом A кошулев тогда и только тогда, когда TorAij(A0,M) = 0 при i≠j. A0-плоский левый модуль М над A0-плоским слева кошулевым кольцом A кошулев тогда и только тогда, когда TorAij(A0,M) = 0 при i≠j.
3. Если A → B -- морфизм неотрицательно градуированных колец, кольцо A кошулево, и B≥1 -- кошулев левый A-модуль (в градуировке, сдвинутой на 1), то и кольцо B кошулево.
4. Левый A-модуль M кошулев тогда и только тогда, когда тривиальное расширение A &oplus M (где градуировка на M сдвинута на 1, два из четырех умножений тривиальны, а два других суть умножение на A и левое действие A на M) является кошулевой алгеброй. Заметим, что в этой конструкции непонятно, как определять "тривиальное" умножение M × A0 → M, но да это нам и неважно, поскольку A0 всегда можно заменить на Z.
5. Обычные общегомологические свойства: поведение в точных последовательностях/фильтрациях, при замене кошулева кольца и проч. (?)
26.12.10 - Update. Видимо, технически правильное определение такое. Градуированный A-модуль M кошулев, если кошулевым является большое градуированное кольцо B с двумя объектами α и μ, определяемое правилами Bαα = A, Bαμ = M со сдвигом на 1 (так чтобы Bαμ жило в градуировках начиная с 1), Bμα = 0, и Bμμ = Z. Если A изначально было большим градуированным кольцом, то B строится как большое градуированное кольцо, множество индексов которого состоит из множества индексов кольца A и одного дополнительного элемента μ.
27.12.10 - UUpdate. А еще более правильное техническое определение такое. Кошулевость градуированного A-модуля M определяется через существование точной категории G', порожденной своими подкатегориями E', E_0, E_1, ..., и функтора сдвига на точной подкатегории G ⊂ G', порожденной одними только E_i. Точная категория E' (с тривиальной точной структурой) состоит при этом из конечных прямых сумм одного-единственного фиксированного объекта, а кольцо эндоморфизмов этого объекта может быть каким угодно, причем замена этого кольца ничего не меняет (так что можно считать его всегда равным Z).