Nov. 29th, 2002

Okazyvaetsya, gruppa perestanovok 6-elementnogo mnozhestva imeet vneshnij avtomorfizm. Ya prochital ob etom zdes':

Consider 6 things, e.g. the numerals 123456. There are 15 non-ordered pairs of them. (Call these "duads.") Also there are 15 ways to divide the original set into three duads, e.g. {(12}{34}{56}}. Call these "synthemes." Five synthemes can be chosen so as to contain each duad exactly once; and there turn out to be exactly six ways to make this choice. You can label these six sets ABCDEF. Then a permutation of 123456 induces a permutation of ABCDEF. A two-cycle such as (12) induces a product of three disjoint two-cycles such as (AB)(CD)(EF), so the map from one permutation to the other cannot be an inner automorphism.

Dovol'no zamyslovataya vse-taki konstrukciya, sopostavlyayuschaya 6-elementnomu mnozhestvu drugoe 6-elementnoe mnozhestvo. Ya esche znayu na etu temu gorazdo bolee prostuyu konstrukciyu, sopostavlyayuschuyu 4-elementnomu mnozhestvu 3-elementnoe mnozhestvo.

Ostal'nye gruppy Sn (pri n ne ravnom 6) vneshnih avtomorfizmov ne imeyut, chto netrudno dokazat', rassmotrev klass sopryazhennosti, sostoyaschij iz transpozicij, i ego obraz pri nashem avtomorfizme. Podrobnosti imeyutsya zdes' (fajl v formate postscript).

June 2025

S M T W T F S
1 2 3 4 56 7
8 9 10 1112 13 14
15 16 17 18 19 2021
22 23 2425 26 27 28
2930     

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jun. 30th, 2025 07:55 pm
Powered by Dreamwidth Studios