Допустим, надо доказать, что всякое топологическое кольцо определенного класса можно получить как кольцо эндоморфизмов некоторого модуля, с естественной топологией на кольце эндоморфизмов. Как может выглядеть раздел статьи, посвященный доказательству этого факта?
Конечно, он начинается с полуторастраничного обсуждения вопроса о топологиях на кольцах эндоморфизмов функторов со значениями в категории абелевых групп. И в особенности, как бороться с теоретико-множественными трудностями, возникающими, если категория, из которой действуют такие функторы, большая. Обсуждения, целиком базирующегося на намного более абстрактной категорной технике, развитой в предшествующей работе того же автора.
А закончиться все это должно, естественно, явным предъявлением модуля, строящегося по топологическому кольцу. И что это за модуль, в сущности, вполне очевидно с самого начала...
Конечно, он начинается с полуторастраничного обсуждения вопроса о топологиях на кольцах эндоморфизмов функторов со значениями в категории абелевых групп. И в особенности, как бороться с теоретико-множественными трудностями, возникающими, если категория, из которой действуют такие функторы, большая. Обсуждения, целиком базирующегося на намного более абстрактной категорной технике, развитой в предшествующей работе того же автора.
А закончиться все это должно, естественно, явным предъявлением модуля, строящегося по топологическому кольцу. И что это за модуль, в сущности, вполне очевидно с самого начала...
no subject
Date: 2019-01-18 05:39 pm (UTC)no subject
Date: 2019-01-18 05:41 pm (UTC)no subject
Date: 2019-01-18 06:19 pm (UTC)no subject
Date: 2019-01-18 06:47 pm (UTC)