[personal profile] posic
Впрочем, и (бесконечность,1)-категории могут на что-нибудь сгодиться. А могут и не сгодиться. Вот два по-настоящему релевантных для меня вопроса:

1. Пусть B -- локально представимая абелева категория. Рассмотрим (бесконечность,1)-категорную версию ее производной категории D(B). Будет ли эта стабильная (бесконечность,1)-категория представимой?

2. Пусть D -- представимая стабильная (бесконечность,1)-категория и A -- сердцевина какой-то t-структуры на D. Является ли абелева категория A локально представимой?

Если ответы на оба эти вопроса вдруг положительны, это был бы большой прогресс в моей деятельности.

Update: подумав -- пункт 1. похож на правду, пункт 2. не очень. Кажется, что t-структур слишком много, и среди них могут быть довольно плохие. Наверное, пункт 2. имеет шанс быть верным для t-структур, порожденных множеством (а не классом) объектов, в каком-то там смысле. Но у меня тут копорожденная t-структура, что выглядит сложнее. Поэтому попробую-ка я сформулировать ослабленный вариант пункта 2. как обратное утверждение к пункту 1.:

2'. Пусть A -- абелева категория, такая что (бесконечность,1)-категорная версия ее производной категории D(A) является представимой (бесконечность,1)-категорией. Следует ли из этого, что категория A локально представима?

Можно наложить немного дополнительных условий на категорию A в пункте 2'., если это чем-то помогает. Предположим, что в абелевой категории A есть бесконечные прямые суммы, и что подобъекты любого фиксированного объекта образуют множество. Тогда 2'. верно?
(will be screened)
(will be screened if not on Access List)
(will be screened if not on Access List)
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

If you are unable to use this captcha for any reason, please contact us by email at support@dreamwidth.org

Profile

Leonid Positselski

January 2026

S M T W T F S
     123
45678910
11121314151617
18192021222324
25262728293031

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jan. 2nd, 2026 08:00 pm
Powered by Dreamwidth Studios