[personal profile] posic
В развитие обсуждения в http://posic.livejournal.com/1269531.html

Пусть k -- фиксированное основное поле. Рассмотрим категорию Ch≥0 = Ch≥0(k) неотрицательно когомологически градуированных комплексов k-векторных пространств, т.е, комплексов вида 0 → C0 → C1 → C2 → …

1. Категория Ch≥0 является ассоциативной, коммутативной, унитальной моноидальной (тензорной) категорией со стандартной моноидальной структурой, задаваемой обычной операцией тензорного произведения комплексов.

2. Категория Ch≥0 является модельной категорией со стандартной модельной структурой, в которой

- слабые эквивалентности суть квазиизоморфизмы комплексов;
- расслоения суть покомпонентно сюръективные морфизмы комплексов;
- корасслоения суть морфизмы комплексов, инъективные на компонентах градуировки, большей нуля (на компонентах компексов градуировки ноль корасслоение может быть любым морфизмом векторных пространств).

3. Категория Ch≥0, с этой моноидальной структурой, с этой модельной структурой, НЕ является моноидальной модельной категорией в смысле стандартного определения: аксиома pushout-product https://ncatlab.org/nlab/show/pushout-product+axiom не выполнена.

В самом деле, частным случаем этой аксиомы (когда domain одного из морфизмов -- нулевой объект) является условие, что тензорное умножение на кофибрантный объект должно переводить корасслоения в корасслоения. Далее, все объекты в Ch≥0 кофибрантны, морфизм k[0] → 0 (где k[i] обозначает комплекс с единственной ненулевой компонентой k в градуировке i) -- корасслоение, но тензорное произведение этого морфизма на объект k[−n], n > 0 корасслоением не является.

P.S. На Ch≥0 не существует модельной структуры, в которой все слабые эквивалентности были бы квазиизоморфизмами, а все корасслоения -- мономорфизмами. В самом деле, каков бы ни был класс расслоений, произвольный морфизм в Ch≥0 просто нельзя было бы разложить в композицию корасслоения с последующей слабой эквивалентностью, в такой модельной структуре.

Достаточно рассмотреть пример морфизма k[0] → 0. Разложить его в композицию мономорфизма со следующим за ним квазиизоморфизмом -- значило бы вложить k[0] в ацикличный комплекс. В Ch≥0 нет такого ацикличного комплекса.
(will be screened)
(will be screened if not on Access List)
(will be screened if not on Access List)
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

If you are unable to use this captcha for any reason, please contact us by email at support@dreamwidth.org

June 2025

S M T W T F S
1 2 3 4 56 7
8 9 10 1112 13 14
15 16 17 18 19 2021
22232425262728
2930     

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jun. 22nd, 2025 12:13 pm
Powered by Dreamwidth Studios