[personal profile] posic
Продолжение сентябрьского постинга http://posic.livejournal.com/1105166.html , декабрьского http://posic.livejournal.com/1153742.html и январского http://posic.livejournal.com/1157340.html , см. также февральский http://posic.livejournal.com/1160333.html

Пусть R -- нетерово коммутативное кольцо с идеалом I. Конечный комплекс R-модулей I-кручения (т.е., в которых каждый элемент аннулируется некоторой степенью I) B называется дедуализирующим комплексом для (R,I), если

- B имеет конечную проективную размерность как комплекс объектов в абелевой категории R-модулей I-кручения;
- естественное отображение R^ = proj limn R/In → RHomR(B,B) является квазиизоморфизмом (комплексов абелевых групп);
- для любого n, подмодули элементов, аннулируемых In в R-модулях когомологий комплекса B являются конечно-порожденными R/In-модулями.

Теорема. Для любого (в обозначениях препринта Contraherent cosheaves) символа * = b, +, −, ∅, abs+, abs− или abs, производные функторы RHomR(B,−) и B⊗LR− задают эквивалентность "обычных" производных категорий D*((R,I)-tors) и D*((R,I)-contra) R-модулей I-кручения и R^-контрамодулей.

Доказательство: согласно рассуждениям из декабрьского постинга по ссылке выше, достаточно показать, что морфизмы сопряжения R^[[X]] → RHomR(B, B⊗LRR^[[X]]) = RHomR(B,B[X]) и B ⊗LR HomR(B,J) → J являются квазиизоморфизмами для всех множеств X и всех инъективных R-модулей I-кручения J.

Пусть K -- ограниченный снизу комплекс инъективных R-модулей I-кручения, снабженный квазиизоморфизмом B → K. Тогда HomR(K,K) -- неограниченный с обеих сторон комплекс плоских R-модулей кокручения, вычисляющий RHomR(B,B). Более того, комплекс R-модулей HomR(K,K) гомотопически плоский, поскольку для любого ацикличного конечного комплекса конечно-порожденных R-модулей С комплекс C ⊗R HomR(K,K) = HomR(HomR(C,K),K) ацикличен. Поэтому квазиизоморфизм R^ → HomR(K,K) индуцирует квазиизоморфизмы R/In → HomR(K,K)/In(K,K) = HomR/In((In)K, (In)K).

Далее, ввиду последнего третьего условия на комплекс B, комплекс R/In-модулей (In)K имеет конечно-порожденные R/In-модули когомологий.

(Продолжение следует.)
(will be screened)
(will be screened if not on Access List)
(will be screened if not on Access List)
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

If you are unable to use this captcha for any reason, please contact us by email at support@dreamwidth.org

Profile

Leonid Positselski

February 2026

S M T W T F S
1234567
891011121314
15161718192021
22232425262728

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Feb. 2nd, 2026 02:16 pm
Powered by Dreamwidth Studios