Entry tags:
Еще о редукции точных категорий - 2
Наряду с аналогом "цело-цело-конечной" последовательности Бокштейна, обсуждавшимся в предыдущих постингах, хотелось бы иметь также аналог "конечно-конечно-конечной" последовательности в общей ситуации редукции точных категорий. Для простоты, мы ограничимся здесь редукциями по эндоморфизмам тождественного функтора.
Пусть F -- точная категория, и пусть σ, τ: IdF → IdF -- два естественных преобразования, бьющих из тождественного эндофунктора на категории F в него самого. Другими словами, для всех объектов X ∈ F заданы эндоморфизмы σX, τX: X → X, образующие коммутативные диаграммы со всеми морфизмами X → Y в категории F.
Предположим, что для каждого трех естественных преобразований σ, τ, στ: IdF → IdF существуют дополнительные данные ("консервативные точные функторы" в подходящие базовые точные категории), с помощью которых можно определить редуцированные точные категории Gσ = F/σ, Gτ = F/τ, Gστ = F/στ. (Будем предполагать, опять же для простоты, во всех трех случаях, что функторы подкрутки на базовых категориях тоже тождественные.)
Обозначим функторы редукции через gσ: F → Gσ и аналогично для τ и στ. Утверждается, что в этих условиях для любых двух объектов X,Y ∈ F имеется естественная длинная точная последовательность
ExtGτn(gτ(X),gτ(Y)) → ExtGστn(gστ(X),gστ(Y)) → ExtGσn(gσ(X),gσ(Y)) → ExtGτn+1(gτ(X),gτ(Y)) →
Строится эта точная последовательность следующим образом. Вторая стрелка ExtGστn(gστ(X),gστ(Y)) → ExtGσn(gσ(X),gσ(Y))индуцирована естественным точным функтором Gστ → Gσ, существующим постольку, поскольку всякий функтор, аннулирующий σ, аннулирует также и στ (и в предположении, что консервативный точный функтор F → Eσ, с помощью которого строится точная категория Gσ, раскладывается в композицию консервативного точного функтора F → Eστ, с помощью которого строится точная категория Gστ, и какого-то точного функтора Eστ → Eσ) (зачеркнутое неверно; как строить вторую стрелку, объясняется в следующем постинге).
Граничное отображение ("гомоморфизм Бокштейна") ExtGσn(gσ(X),gσ(Y)) → ExtGτn+1(gτ(X),gτ(Y)) есть композиция граничного отображения ExtGσn(gσ(X),gσ(Y)) → ExtFn+1(X,Y) и отображения ExtFn+1(X,Y) → ExtGτn+1(gτ(X),gτ(Y)), индуцированного функтором gτ. Что касается первой стрелки ExtGτn(gτ(X),gτ(Y)) → ExtGστn(gστ(X),gστ(Y)), то она строится аналогично тому, как (но проще, чем) строится в разделе 4.5 статьи Mixed Artin-Tate motives... (вышеупомянутое) граничное отображение в "цело-цело-конечной" последовательности Бокштейна.
Конструкция основана на лемме 4.5 из раздела 4.4 той же статьи, согласно которой "большое градуированное кольцо" ExtGτ*(gτ(X),gτ(Y))X,Y∈F индуцировано со своей нулевой градуировочной компоненты как (левый или правый) "большой градуированный модуль" над большим градуированным кольцом ExtF*(X,Y)X,Y∈F (в смысле, с нулевой градуировочной компоненты как модуля над нулевой градуировочной компонентной последнего большого кольца). Поэтому достаточно построить искомое отображение на классах Ext степени 0 и проверить необходимые согласования.
Пусть имеется морфизм gτ(X) → gτ(Y) в категории Gτ. Тогда можно подобрать допустимый эпиморфизм X' → X, допустимый мономорфизм Y → Y' и морфизмы X' → Y и X → Y' в категории F,образующие коммутативный квадрат в категории F, образы которых при функторе gτ вместе с исходным морфизмом образуют два коммутативных треугольника с общим ребром в точной категории Gτ. Квадрат из морфизмов в категории F коммутативен по модулю идеала морфизмов, делящихся на τ. Заменяя обе стрелки X' → Y и X → Y' на их композиции с эндоморфизмами σ (все равно, какой из вершин, т.к. естественное преобразование), получаем новый коммутативный квадрат из морфизмов с теми же вершинами в категории F, коммутативный по модулю идеала морфизмов, делящихся на στ.
Пусть K → X' -- ядро допустимого эпиморфизма X' → X и Y' → C -- коядро допустимого мономорфизма Y → Y'. Тогда композиции K → X' → Y и X → Y' → C делятся на τ, если подразумеваются исходные морфизмы X' → Y и X → Y' (поскольку они аннулируются функтором gτ), и, следовательно, на στ, eсли новые. Ввиду последнего, коммутативный (согласно предыдущему абзацу) образ нового квадрата при функторе gστ можно (единственным образом) дополнить стрелкой gστ(X) → gστ(Y) так, чтобы коммутативность сохранилась. Искомое отображение на классах Ext степени 0 построено.
Согласованность с умножениями на морфизмы, приходящие из F, сразу следует из этих построений, так что отображение можно продолжить на классы Ext всех степеней. Остается показать, что "левая" и "правая" конструкции искомого отображения дают одинаковый результат. Достаточно проверить это для классов Ext степени 1, что делается с помощью чуть более простой версии того же рассуждения, которым доказывается аналогичное утверждение в разделе 4.5 все той же статьи. Вместо квадрата 3x3 из коротких точных последовательностей, который строится в разделе 4.5, надо будет просто построить морфизм коротких точных последовательностей, выражающий искомое равенство левой и правой композиций морфизмов с классами Ext^1.
Из сравнения конструкции выше с конструкцией "цело-цело-конечного" отображения Бокштейна в том же разделе 4.5 ясно, что композиция построенного отображения ExtGτn(gτ(X),gτ(Y)) → ExtGστn(gστ(X),gστ(Y)) с граничным отображением ExtGστn(gστ(X),gστ(Y)) → ExtFn+1(X,Y) равна граничному отображению ExtGτn(gτ(X),gτ(Y)) → ExtFn+1(X,Y). Теперь нетрудно убедиться, что описанная в постинге http://posic.livejournal.com/994724.html диаграмма, составленная из групп Ext между образами объектов X, Y ∈ F в категориях F, Gσ, Gτ, Gστ коммутативна, так что точность искомой "конечно-конечно-конечной" последовательности Бокштейна следует из точности "цело-цело-конечных" последовательностей Б. ввиду аргумента с диаграммным поиском, о котором говорится в том постинге.
Пусть F -- точная категория, и пусть σ, τ: IdF → IdF -- два естественных преобразования, бьющих из тождественного эндофунктора на категории F в него самого. Другими словами, для всех объектов X ∈ F заданы эндоморфизмы σX, τX: X → X, образующие коммутативные диаграммы со всеми морфизмами X → Y в категории F.
Предположим, что для каждого трех естественных преобразований σ, τ, στ: IdF → IdF существуют дополнительные данные ("консервативные точные функторы" в подходящие базовые точные категории), с помощью которых можно определить редуцированные точные категории Gσ = F/σ, Gτ = F/τ, Gστ = F/στ. (Будем предполагать, опять же для простоты, во всех трех случаях, что функторы подкрутки на базовых категориях тоже тождественные.)
Обозначим функторы редукции через gσ: F → Gσ и аналогично для τ и στ. Утверждается, что в этих условиях для любых двух объектов X,Y ∈ F имеется естественная длинная точная последовательность
ExtGτn(gτ(X),gτ(Y)) → ExtGστn(gστ(X),gστ(Y)) → ExtGσn(gσ(X),gσ(Y)) → ExtGτn+1(gτ(X),gτ(Y)) →
Строится эта точная последовательность следующим образом. Вторая стрелка ExtGστn(gστ(X),gστ(Y)) → ExtGσn(gσ(X),gσ(Y))
Граничное отображение ("гомоморфизм Бокштейна") ExtGσn(gσ(X),gσ(Y)) → ExtGτn+1(gτ(X),gτ(Y)) есть композиция граничного отображения ExtGσn(gσ(X),gσ(Y)) → ExtFn+1(X,Y) и отображения ExtFn+1(X,Y) → ExtGτn+1(gτ(X),gτ(Y)), индуцированного функтором gτ. Что касается первой стрелки ExtGτn(gτ(X),gτ(Y)) → ExtGστn(gστ(X),gστ(Y)), то она строится аналогично тому, как (но проще, чем) строится в разделе 4.5 статьи Mixed Artin-Tate motives... (вышеупомянутое) граничное отображение в "цело-цело-конечной" последовательности Бокштейна.
Конструкция основана на лемме 4.5 из раздела 4.4 той же статьи, согласно которой "большое градуированное кольцо" ExtGτ*(gτ(X),gτ(Y))X,Y∈F индуцировано со своей нулевой градуировочной компоненты как (левый или правый) "большой градуированный модуль" над большим градуированным кольцом ExtF*(X,Y)X,Y∈F (в смысле, с нулевой градуировочной компоненты как модуля над нулевой градуировочной компонентной последнего большого кольца). Поэтому достаточно построить искомое отображение на классах Ext степени 0 и проверить необходимые согласования.
Пусть имеется морфизм gτ(X) → gτ(Y) в категории Gτ. Тогда можно подобрать допустимый эпиморфизм X' → X, допустимый мономорфизм Y → Y' и морфизмы X' → Y и X → Y' в категории F,
Пусть K → X' -- ядро допустимого эпиморфизма X' → X и Y' → C -- коядро допустимого мономорфизма Y → Y'. Тогда композиции K → X' → Y и X → Y' → C делятся на τ, если подразумеваются исходные морфизмы X' → Y и X → Y' (поскольку они аннулируются функтором gτ), и, следовательно, на στ, eсли новые. Ввиду последнего, коммутативный (согласно предыдущему абзацу) образ нового квадрата при функторе gστ можно (единственным образом) дополнить стрелкой gστ(X) → gστ(Y) так, чтобы коммутативность сохранилась. Искомое отображение на классах Ext степени 0 построено.
Согласованность с умножениями на морфизмы, приходящие из F, сразу следует из этих построений, так что отображение можно продолжить на классы Ext всех степеней. Остается показать, что "левая" и "правая" конструкции искомого отображения дают одинаковый результат. Достаточно проверить это для классов Ext степени 1, что делается с помощью чуть более простой версии того же рассуждения, которым доказывается аналогичное утверждение в разделе 4.5 все той же статьи. Вместо квадрата 3x3 из коротких точных последовательностей, который строится в разделе 4.5, надо будет просто построить морфизм коротких точных последовательностей, выражающий искомое равенство левой и правой композиций морфизмов с классами Ext^1.
Из сравнения конструкции выше с конструкцией "цело-цело-конечного" отображения Бокштейна в том же разделе 4.5 ясно, что композиция построенного отображения ExtGτn(gτ(X),gτ(Y)) → ExtGστn(gστ(X),gστ(Y)) с граничным отображением ExtGστn(gστ(X),gστ(Y)) → ExtFn+1(X,Y) равна граничному отображению ExtGτn(gτ(X),gτ(Y)) → ExtFn+1(X,Y). Теперь нетрудно убедиться, что описанная в постинге http://posic.livejournal.com/994724.html диаграмма, составленная из групп Ext между образами объектов X, Y ∈ F в категориях F, Gσ, Gτ, Gστ коммутативна, так что точность искомой "конечно-конечно-конечной" последовательности Бокштейна следует из точности "цело-цело-конечных" последовательностей Б. ввиду аргумента с диаграммным поиском, о котором говорится в том постинге.
no subject
no subject
no subject
Представьте себе, что вы внукам рассказываете о трудах всей своей жизни, так, чтобы они поняли.
no subject
Если мне вообще удастся увидеть внуков, это будет очень хороший результат. Увидеть их в таком возрасте, когда можно будет пытаться рассказывать им о трудах моей жизни... Маловероятно.
Но, вот я читателям моего ЖЖ рассказываю о трудах моей жизни. Без всяких сказок. Как видно, получилось достаточно увлекательно, чтобы вы пошли разыскивать и комментировать пятилетней давности математический постинг. То есть, что-то понять все-таки может кто-то. Но не математическое содержание, конечно.
no subject
Философия сокрытия знания, вполне понятная в средние века, когда за ересь могли и сжечь, а за обещания превратить свинец в золото вешали регулярно, в периоды, когда научной парадигмой становится датаизм - максимальная открытость информации и взаимоперекрестной передачи идей и методов из разных областей знания, и совсем непересекающихся наук заставляет искать формы единого языка общения, доступного для восприятия как профессионалами, так и сторонними наблюдателями, желающими разобраться в оценках ситуации. Гениальные прозрения должны освещать путь не только двух трех десятков человек, вовлеченных в сходные тематики, но также и популярные выжимки из них должны наталкивать остальные 95 процентов идиотов к причастности. Что-то типа "эйнштейновская теория относительности говорит, что все относительно". Это заставляет их хотя бы минимальным образом следить за развитием научной мысли.
no subject
Я не готов быть никем заставляемым -- и не собираюсь никого заставлять. В причастности идиотов к моей деятельности я ни в малейшей мере не заинтересован.
В то же время, я нисколько свое знание не скрываю. Мы пишем эти комментарии под открытым постингом, содержащим такое знание. Пожалуйста -- читайте, берите, используйте. Непонятно? Сначала придется долго учиться, да. Царской дороги в геометрию нет.
Я тебя не трогаю, и ты меня не трогай
Иду своей дорогою – иди своей дорогой
Я тебя не трогаю, иду своей дорогою
И ты меня не трогай, иди своей дорогой
no subject
no subject
no subject
no subject
no subject
no subject
Как вариант - можно попросить человека, который хорошо разбирается в интересующем Вас вопросе, потратить пару вечеров на то, чтобы подобрать Вам литературу.
no subject
no subject
no subject
Реальность (очень грубо-приблизительно): прочитать десять книг на разные темы, в порядке быстрого возрастания сложности и абстрактности, прорешав по два десятка упражнений к каждой. Или прослушать двадцать курсов на разные темы, тоже в порядке возрастания, прорешав по три десятка упражнений к каждому. После этого прочитать тридцать статей, внимательно разобрав доказательства.
Представление нематематика: решить два тома упражнений на одну тему (о существовании других тем он не слыхал, и саму возможность их существования вообразить себе ему не удается).
no subject
no subject
То есть язык иерархического структурирования переходов от частного к общему должен иметь оинаковые слова как для алгебраистов, так для функанщиков и топологогеометрических представителей.
no subject
no subject
no subject
no subject
Материал для этих сказок даже разбросан скажем, во всяких обзорах и на него можно натолкнуться. Вот например, на днях листая электронный вариант Bulletin AMS наткнулся на рецензию на книгу про р-адические ДУ,
http://www.ams.org/journals/bull/2012-49-03/S0273-0979-2012-01371-X/S0273-0979-2012-01371-X.pdf
и там в частности приводится интерпретация(Turritin's theorem), как теорема о существовании решений ДУ n-го порядка с постоянными к-ми может быть записана в терминах модулей и тем самым обобщена с действительных постоянных к-тов на весьма широкий класс колец. Грубо говоря, вот этот пример перевода того, чем занимается хозяин этого журнал, на эпсилон-дельты. Другой вопрос, что для других вещей, которыми занимается автора, перевод еще не сделан и неизвестно когда будет сделан, может и через 100 лет.
no subject