posic ([personal profile] posic) wrote2023-06-15 11:07 pm
Entry tags:

Вот я думаю

- с аффинной схемой можно связать одну абелеву категорию
- с аффинной формальной схемой (или инд-аффинной инд-схемой) можно связать две абелевы категории
- с неаффинной схемой можно связать одну абелеву и одну точную категорию
- с неаффинной формальной схемой можно связать одну абелеву и три точные категории

Это не считая подкатегорий -- выше посчитаны только такие категории, которые не вкладываются одна в другую. (Иначе уже с аффинной схемой можно связать категорию всех модулей, инъективных, плоских, проективных и т.д.)

Более того -- все это только разновидности когерентных пучков. Ну, квазикогерентных. Ничего конструктивного, ничего D-модульного здесь не посчитано. Пучки модулей над пучком колец функций, не обладающие свойствами когерентности, не рассматриваются.

С каждой абелевой или точной категорией можно связать две-три триангулированные категории (обычную и экзотические производные категории неограниченных комплексов). Многочисленные триангулированные эквивалентности связывают между собой многочисленные триангулированные категории, которые можно породить из упомянутых абелевых и точных категорий...

Вот я думаю: by any stretch of the imagination, конструкции и свойства таких категорий могут представлять интерес для алгебраического геометра?

Post a comment in response:

(will be screened)
(will be screened if not on Access List)
(will be screened if not on Access List)
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

If you are unable to use this captcha for any reason, please contact us by email at support@dreamwidth.org