posic ([personal profile] posic) wrote2015-10-14 11:48 am
Entry tags:

Теорема Эклофа-Трлифая для локально представимых/λ-гротендиковых абелевых категорий

Пусть A -- абелева категория с множеством образующих, в которой существуют произвольные прямые пределы и функтор Hom из любого объекта сохраняет λ-направленные прямые пределы для достаточно больших кардиналов λ.

Пусть S -- какое-то множество объектов категории A; обозначим через C класс объектов, ExtA1-ортогональных справа к S и через F класс объектов, ExtA1-ортогональных слева к C.

Пусть X -- объект категории A, который можно вложить в объект из класса C. Тогда его можно вложить в объект из класса C таким образом, что коядро будет принадлежать классу F. При этом это коядро будет трансфинитно-итерированным расширением объектов из S, в смысле (не обязательно точного) направленного прямого предела.

Обратное верно даже в большей общности: в любой абелевой категории класс объектов, Ext1-ортогональных слева к фиксированному объекту справа, замкнут относительно трансфинитно-итерированных расширений в смысле направленного прямого предела (тех из них, которые существуют, в смысле, существуют необходимые для их построения прямые пределы).

Доказательства следуют в русле теоремы 2.5 и леммы 4.4 работы J. Rosicky, "Flat covers and factorizations", Journ. of Algebra 253, 2002 (а также по ссылке от теоремы 2.5 и двойственной версии леммы 4.4).

Current mood: не зря съездил в Брно!

Post a comment in response:

(will be screened)
(will be screened if not on Access List)
(will be screened if not on Access List)
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

If you are unable to use this captcha for any reason, please contact us by email at support@dreamwidth.org