posic ([personal profile] posic) wrote2014-02-12 10:32 pm
Entry tags:

Полубесконечная алгебраическая геометрия

В общем, короче, сейчас это мыслится примерно так. Основным исходным данным является некоторый морфизм YX. Здесь:

- X -- это, примерно, инд-нетеров инд-стэк с дуализирующим комплексом; в общем, что-то вроде индуктивного предела цепочки замкнутых вложений конечномерных многообразий, профакторизованного по действию проаффинной проалгебраической группы;
- Y -- ну, что тут скажешь, что-то совсем большое; бесконечномерный во все стороны инд-стэк;
- морфизм YX -- что-то вроде расслоения; как минимум, плоский морфизм; или, хотя, наверное, не обязательно гладкий, но, может быть, что-то лучшее, чем произвольный плоский морфизм;
- слои морфизма YX -- примерно, квазикомпактные полуотделимые схемы; в общем, что-то бесконечномерное, но не сложно собранное-склеенное; наверное, не обязательно аффинные схемы, но не намного сложнее того.

В этом мире должны жить такие звери, как
- полу(ко)производная категория квазикогерентных пучков кручения на Y ("полупроизводная" -- значит копроизводная вдоль X и обычная производная вдоль слоев морфизма YX);
- полу(контра)производная категория контрагерентных копучков контрамодулей на Y;
- эквивалентность этих двух полупроизводных категорий, зависящая (как и последующие два пункта) от выбора дуализирующего комплекса на X;
- двусторонний производный функтор полутензорного произведения квазикогерентных пучков кручения на Y ("полутензорного" -- значит котензорного (т.е., !-тензорного) произведения вдоль X и обычного тензорного (*-тензорного) вдоль слоев);
- двусторонний производный функтор полугомоморфизмов из квазикогерентных пучков кручения в контрагерентные копучки контрамодулей на Y.

В этом контексте, полубесконечная гомологическая алгебра ассоциативных алгебраических структур (таких, как полуобертывающая полуалгебра тейтовской алгебры Ли, типа алгебры Вирасоро или Каца-Муди, и т.п.) превращается в частный случай нарисованной выше картины, рассматриваемой в рамках некоммутативной алгебраической геометрии.

Пространством X в этой ситуации будет такой стэк -- фактор точки по действию проалгебраической группы, соответствующей положительной части нашей Вирасоро. А (не вполне корректно определенным, т.к. геометрия некоммутативная, но в грубом приближении) слоем морфизма YX будет некоммутативная аффинная схема -- спектр обертывающей алгебры (несуществующей) факторалгебры Вирасоро по ее положительной части (т.е., совсем грубо, обертывающей алгебры неположительной подалгебры в Вирасоро). Скажем, четвертый пункт в перечне выше будет в этой ситуации полубесконечными гомологиями этой Вирасоро (а пятый -- полубесконечными когомологиями, а третий -- соответствием между комплексами представлений на дополнительных уровнях, а первый -- полупроизводной категорией категории O).

В описанной ситуации с алгеброй Ли как бы отсутствует инд-измерение (есть только стэковое -- хотя я не уверен, что в некоммутативной геометрии грань между ними так уж отчетлива -- наверное, можно и на проалгебраическую группу как на инд-нульмерную некоммутативную инд-схему посмотреть, с неприводимыми представлениями в роли точек), и дуализирующий комплекс банален. Но, вообще говоря, все эти ингредиенты там могут быть. Скажем, если сделать структуру тейтовской алгебры Ли зависящей от параметров, а параметры заставить пробегать какое-нибудь особое алгебраическое многообразие, дуализирующий комплекс как раз понадобится.

P.S. Собственно, что во всем этом нового, по сравнению с тем, что написано в полубесконечной монографии? Возможность использования контрагерентных копучков для глобализации контрамодулей на неаффинные схемы -- да. Но помимо этого, еще и такое замечание (восходящее к Иенгару-Краузе, Нееману-Мурфету и т.д.)

В полубесконечной книжке рассматривалась "трехэтажная" ситуация с базовым некоммутативным кольцом A, над ним кокольцом C, над ним полуалгеброй S. Кольцо A должно было иметь конечную гомологическую размерность, без этого ничего не работало. В этом смысле говорилось, что "нулевой этаж у нас небольшой (конечной высоты), первый и второй полноразмерные (бесконечные)".

Теперь можно считать более-менее установленным, что нулевой этаж можно сделать намного выше, если включить в рассмотрение дуализирующий комплекс для кольца А (в некоммутативной ситуации -- вообще говоря, связывающий кольцо A с другим некоммутативным кольцом B). В полной общности это, конечно, еще не проработано и там могут быть трудности (например, с существованием резольвент), но ряд частных случаев вполне себе прописаны.

"Размер" колец с дуализирующими комплексами, конечно, тоже где-то там ограничен, но все же их разнообразие гораздо больше, чем просто колец конечной гомологической размерности.

Post a comment in response:

(will be screened)
(will be screened if not on Access List)
(will be screened if not on Access List)
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

If you are unable to use this captcha for any reason, please contact us by email at support@dreamwidth.org