posic ([personal profile] posic) wrote2010-12-19 08:55 pm
Entry tags:

Глупые фильтрации и сопряженные функторы

Решение упражнения, сформулированного в http://posic.livejournal.com/517640.html

Пусть C и D -- триангулированные категории, F и G -- пара сопряженных функторов между C и D, и пусть M и N -- полные подкатегории в C и D, замкнутые относительно расширений и переводимые функторами F и G одна в другую. Предположим, что всякий объект из N является итерированным расширением прямых слагаемых объектов, приходящих из M. Тогда если всякий морфизм степени >1 в C между объектами из M разлагается в композицию морфизмов положительной степени между объектами из M, то то же верно для морфизмов между объектами из N в D.

В самом деле, достаточно проверять разложимость для морфизмов степени >1 в D между объектами из N, один из концов которых приходит из M (в силу условия и известного общего результата об условиях разложимости высших морфизмов), а это следует из сопряженности и разложимости в C.